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CRYPTIC  CROSSWORD  PUZZLES:  A  STATISTICAL ANALYSIS 
OF ERRORS IN SOLUTION 

S. Naranan 
 

A B S T R A C T 

************* 

 Cryptic crosswords are very popular linguistic puzzles, intellectually 

challenging and enjoyable for the solver.  I have documented my ‘error scores’ and 

presented the statistical distribution of errors for 3404 puzzles over a decade, in 2010.  

Now the analysis is extended to 5484 puzzles (16 years data).  In both, the Negative 

Binomial Distribution (NBD) is a good fit to data.  It was conjectured that NBD will 

prove to be adequate for all solvers with diverse skills.  Data from another solver 

obtained in 2013 supports the conjecture.  A popular model for NBD as a ‘mixture 

distribution’ of  Poisson and Gamma distributions is appropriate for the distribution of 

errors.  The two free adjustable parameters of NBD (p,k) are  measures of average 

complexity of puzzles for a solver.  Simulations of NBD’s for different levels of 

solver skills are presented. 

 A complementary statistic is the ‘complexity of a composer’s puzzle’, or the 

study of ‘one puzzle, many solvers’ which depends on solver feedback to the 

composer.  There exists no systematic study and it is argued that it is much-needed 

input for the composer.  Interestingly, word puzzle lottery,  popular 60-70 years ago, 

is an example of a social experiment for the study of solver behaviour in ‘one puzzle, 

many solvers’.  The results conformed to the canonical Binomial distribution.  The 

connection between some commonly occurring statistical distributions is discussed in 

the appendices.   
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“I often say that when you can measure what you are speaking about 
and express it in number, you know something about it;  but when you 
cannot express it in numbers, your knowledge is of a meagre and 
unsatisfactory kind;  it may be the beginning of knowledge but has 
scarcely in your thoughts advanced to the state of science, whatever 
the matter be”. 
                                                                Lord  Kelvin (1824-1907) 
 
1. INTRODUCTION. 

          Over the last hundred years crossword puzzles have continued to grow with 

ever increasing popularity.  For the solver, they provide intellectual exercise and 

entertainment.  They are daily features, world-wide in newspapers.  Following its first 

appearance in the New York World on 21 December 1913, it quickly spread to U.K; in 

time it acquired a different hue in the shape of cryptic in Britain.  Today the two 

distinct classes of puzzles are typified by the New York Times in the U.S and the 

Times in Britain and they differ in grid structure, word types and cluing pattern. The 

cryptics have become popular in Europe and India.  In particular, The Hindu a popular 

daily in India has its own team of compilers of cryptic.  Only on Sundays, The Hindu 

has puzzles syndicated from The Guardian of U.K.   

          I have been a regular solver of cryptics for more than 40 years.  I began 

documenting the number of unsolved clues in each puzzle from 1987.  In 2010, I 

published my statistical analysis of failures in 3404 puzzles over a 10-year period – 

five years each of the Times of India (Bombay) and The Hindu (Chennai) – in the 

Journal of  Quantitative Linguistics (Naranan 2010).  The chief aim of the analysis 

was to quantify the average complexity of the puzzles for the solver.  The data was 

simply the number of puzzles N(x) with x errors (x = 0,1,2,3.....15).  This histogram 

N(x) vs x is referred hereafter as the ‘distribution of  x’.  It is found that the 

distribution has long tail with x up to 15.  As a crude measure of ‘complexity’ one 

may adopt the mean (m) and standard deviation (s) of the distribution.  But one can do 

better if a mathematical statistical function can be found to define the entire 
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distribution point by point (x = 0,1,2,3....15).  Indeed such a function exists; it is called 

the Negative Binomial Distribution (NBD) which has two free, adjustable parameters 

(p,k).  (p,k) are simply related to (m,s) of the distribution.  

          Why is NBD a good fit to crossword error data?  A viable model based on the 

fact that the individual puzzles span a wide range of complexity resulting in the long 

tail, was presented in Naranan (2010).  It is interesting that in Insurance industry, car 

accidents in a large group of zones conform to NBD and this fact is used in fixing car 

insurance tariffs.  

          But NBD is not alone!  It turns out that another well-known distribution called 

the lognormal distribution (LND2), a variant of the ubiquitous normal (Gaussian) 

distribution also fits the crossword error results.  But it requires three parameters (µ, σ, 

X0) rather than two and so is the less preferred of the two.  It is conjectured that NBD 

with (p,k) in a different domain, say for another solver, may not be ‘equivalent’ to 

LND2. 

          This paper is a follow-up of the 2010 paper (Naranan, 2010) and has new results 

of three different categories:  (1) an update of my own results to 16 years of data with 

total number of puzzles 5484 (2) analysis of another solver’s (Daniel Peake’s) 

error/success data from 260 puzzles of The Guardian in 2013 and (3) a very special 

kind of word puzzle lottery which was popular in India in 1940’s and 1950’s.  NBD 

continues to be a good fit to my updated results and for Daniel Peake’s data (Sections 

2,3).  The word puzzle lottery is shown to be a unique social experiment to test the 

well-known Binomial distribution (Section 7). 

          It is conjectured that every solver’s error scores, can be characterized by some 

specific (p,k) of NBD.  To illustrate this, N(x) distributions are presented for four sets 

of (p,k) values representing different levels of solver skill   (Section 5). 

          Based on NBD, can one predict the entire error distribution N(x) of a solver?  

The NBD parameters (p,k) are derived from the (m,s) of the ‘raw’ data of the solver. 

In principle it is possible to determine (p,k) from any two data points.  We consider the 

two values N(x=0) and N(x=1).   The main caveat here is that the two should be 

sufficiently large. This criterion is met by my data.  In general the predictive power of 
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NBD is constrained by statistics. The main strength of NBD lies in its capacity to fit 

the entire distribution N(x) with just two parameters (Section 6). 

          What is lacking is quantifying the complexity of a compiler’s puzzle through a 

study of solvers’ inputs of their errors for the same puzzle.  This requires a project by 

an organized group of solvers feeding data to the composer with due attention to 

uncertainties and biases in solver behaviour (Section 4).  

          A remarkable feature of the NBD is that superposition of different groups of 

data with wide-ranging complexities can still conform to NBD.  This was 

demonstrated in Naranan (2010) where four different sets of data individually and 

collectively conformed to NBD.  Using standard methods of statistical theory it can be 

proved that a superposition of NBD’s remains an NBD under some constraints.  

However NBD remains robust and accommodative of some deviations from the 

constraints. Several statistical distribution functions figure in this paper.  Their 

interrelationship is discussed in the last Section.  The properties of three main discrete 

distributions, the Binomial, the Poisson and the Negative Binomial are compared.  

These topics of theoretical interest are presented in the Appendices.    

 

2. CRYPTIC  CROSSWORDS:  DATA  ON  FAILURES  IN  SOLUTION. 

          My crossword puzzles error (failures) data were first presented in Naranan 

(2010).  They comprised 10 years of data from two dailies, the Times of India and The 

Hindu.  Now I have six more years of data from The Hindu.  The cumulated data of 16 

years has total sample size NT = 5484. 

          This data is presented in Table 1.  N(x) is the number of puzzles with  x  errors 

(x = 0,1,2,3....15).  N(x) decreases monotonically with increasing  x  which extends up 

to 15 (nearly half the total number of clues).  It is instructive to look at the low  x  and 

the high  x  values.  N(0) and N(1) together account for 3746 or 68.3 % of the total. 

The tail end  x > 8 contributes 53 or about 1 %.  The large sample size has rendered 

the tail contribution substantial enough for statistical analysis. 

          The aim of the analysis is to obtain a measure of the complexity of puzzles.  

Here it pertains to a single solver and the complexity is averaged over a large number 

of diverse puzzles.  For the solver (the author in the present case) the parameters (m,s)  
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Table  1 

CROSSWORD FAILURE 
DATA  UPDATE 2014

   ALLCW14

x\N(x) OBS
0 2500
1 1246
2 748
3 394                

4 227            ALLCW14: 
5 159 Times of India (1987-91)
6 67     The Hindu (2004-14)
7 56
8 34
9 19
10 13
11 7
12 6
13 5
14 0
15 3

NTOT 5484
m 1.323
s 1.871
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provide a measure of complexity.  m  is the average number of failures and  s  is the 

spread around the average.  (m,s) = (1.323, 1.871). 

 

2.1.  NEGATIVE  BINOMIAL  DISTRIBUTION  (NBD). 

          Parameters (m,s) provide only a gross measure of complexity.  One can do 

better by finding a suitable mathematical function that fits the distribution over the 

entire range of  x. This function will have one or more free adjustable parameters.  The 

search for such a function begins by looking at (m,s).  We consider the data as an 

example of random count data of integer values (x = 0,1,2.....).  The first choice (as the 

default) is the Poisson distribution which depends only on one parameter  𝜆𝜆.  

                      PD:  Prob (x) = P(x) = exp(−𝜆𝜆) 𝜆𝜆𝑥𝑥 / x!       (𝜆𝜆 > 0, x = 0,1,2....)           (1) 

𝜆𝜆 completely determines the distribution.  For PD,  m  and  s2  are both equal to 𝜆𝜆. 

 m = s2= 𝜆𝜆 

Here  m/ s2= 0.378 much less than 1.  This ratio is a measure of over-dispersion;  here 

it indicates a long tail.  To account for this tail, an additional parameter besides  𝜆𝜆  is 

required.  The Negative Binomial Distribution (NBD) is usually the next choice  

(Feller 1972).  The distribution function is 

                        NBD:  P(x) ={Γ(k+x)/[ Γ (k) x!]}  pk qx       (k > 0,  x = 0,1,2......)       (2) 

where (p,k) are the two parameters and q = 1 - p.  Here Γ (k) is the Gamma function 

defined by 

Γ (k) = (k-1) Γ (k-1)        (k > 1) 

When  k  is an integer 

Γ (k) = (k-1)(k-2)..........1  = (k-1) ! ,    Γ (1) = 1 

The NBD parameters (p,k) are easily determined from (m, s). 

p = m/s2              k = m p/(1-p) 

For any given  x equation (2) gives P(x).  When we wish to tabulate  P(x) for all 

values of  x  it is easier to use the following recurrence relations implied by eq (2). 

                                                       P(0) = pk    (x=0)                                                (3a) 

                          P(x+1) = P(x) (1-p) [(k+x)/(1+x)]          (x =0,1,2,3....)                 (3b) 

These probabilities are multiplied by NT to obtain N(EXP). 
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Figure  1  
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 The observed values N(OBS) and those calculated (or expected) N(EXP)  for 

NBD are presented in the Table in Figure 1(cols 2,3).  Even a cursory comparison of 

the two sets of numbers suggests very good agreement within the expected sampling 

errors.  For comparison the original data from Naranan (2010) for 10-year data are 

also shown (cols 4,5).  The (p,k)  values are (0.378, 0.803) for ALLCW14 (16-years) 

and (0.455, 0.869) for ALLCW (10-years). 

          The ‘chi-squared’ (χ2) statistic is a measure of ‘goodness of fit’ to NBD.  It 

depends on the deviations N(OBS) – N(EXP) for all  x  (Cramer 1955).  The χ2 

depends on ‘ndf’ the number of degrees of freedom which is  n – 3 where  n is the 

number of data points (the pairs OBS and EXP).  For ALLCW14  χ2 (ndf) = 11.6 (11) 

and for ALLCW 9.7 (8).  From the  χ2  tables (Cramer 1955) one finds that for ndf = 

11, the  χ2  will exceed 17.3 with probability 0.1 and for ndf = 8 it will exceed 13.4.   

The observed  χ2, 11.6 and 9.7 respectively imply the NBD hypothesis is ‘acceptable’ 

or more precisely ‘cannot be rejected’.    

          Compared to ALLCW, the ALLCW14 results show an increase in both m and s 

implying the puzzles are getting harder to solve.  This confirms my general impression 

that the mix of puzzles of varying difficulty is now weighted more in favour of hard 

puzzles.  

          The figure next to the Table, charts the results from all the four columns.  

Notice that the y-axis is logarithmic and for large  x  the plots are nearly straight lines.  

This is because when k << x,  the ratio P(x+1)/P(x)  tends to  q =1 - p, a constant 

(equation 3b).  This is characteristic of a geometric series or exponential decrease of 

N(x) vs x. 

           Why is NBD a good model for distribution of crossword errors?  The basic 

statistical description is a random counting process which is Poissonian.  The different 

puzzles comprising the total sample have different characteristic Poisson parameters  

𝜆𝜆’s and this fact is modelled by a distribution of the 𝜆𝜆′ s  g(𝜆𝜆 ).  If g(𝜆𝜆) is a Gamma 

distribution, the superposed puzzle sample has a Negative Binomial distribution 

(Feller 1972,  Naranan 2010).  For details see the Appendix A1.  The NBD is 

therefore a mixture distribution (MD), a convolution of Poisson and Gamma 

distributions.  
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2.2. LOGNORMAL  DISTRIBUTION 

          Is it possible that some other distribution besides the NBD, can also fit the N(x) 

distribution?  The χ2-test merely certifies a hypothetical test distribution as ‘not 

rejected’.  It leaves open the possibility of other hypothetical distributions too meeting 

the test criteria.  In the present case an alternative to NBD exists and NBD is not 

alone!  It is the lognormal distribution (LND), a variant of the normal distribution 

(ND). 

                         ND: P(x) = (1/σ√2π )  exp [-(x-µ)2/2 σ2]          -∞ < x < +∞              (4) 

where  µ  is the mean and σ  is the standard deviation.  In LND, an important variant 

of ND,  ln x is normally distributed. 

                    LND1:  P(x) = (1/σ√2π )(1/x)  exp [-(ln x-µ)2/2 σ2]          x > 0              (5) 

Whereas ND is symmetric (bell shaped) the LND has long tails. 

          Yet another version of LND is the 3-parameter function in which  ln(x+X0) is 

normally distributed.               

      LND2:  P(x) = (1/σ√2π )[1(/x+ X0)]  exp {-[ln( x+ X0)-µ])2/2 σ2]}      x > 0       (6) 

X0 is a constant and can be positive or negative (Cramer 1955).   When  x  = 0, LND2 

reduces to LND1.  The method of determining the parameters (X0 , µ , σ ) is given in 

Naranan (2010). 

          The ‘expected’ values of N(x) for LND2 are given in Figure 2 col 3 for 

ALLCW14 and col 5 for ALLCW.   The LND2 and NBD parameters are compared in 

Table 2.  Compared to ALLCW, in ALLCW14, the (p,k) values are lower and the    

(X0, µ, σ) values higher.  The percentage deviations are given in the last row.    χ2 (ndf) 

for  ALLCW14 and ALLCW are 11.0 (11) and 9.3 (8) respectively. 

           Some insight into the reason for similar behaviour of NBD and LND2 can be 

obtained by comparing them at large  x.   We compare the expected ratio P(x+1)/P(x) 

for NBD and LND2 for  x ≥ 7 for ALLCW14.   In the interval  7 ≤   x  ≤ 13 the ratio is 

0.607 – 0.613 and 0.614 - 0.677 respectively.  The nearly constant value for NBD 

(0.610) is due to the fact that according to equation 3(b) for large x and  k << x, the 

ratio tends to  1-p, a constant, in this case 0.622.  (Further, when  k = 1, the ratio is 

exactly 1-p for all x). It is very plausible that for a different range of (p,k), the 

closeness of NBD and LND2 is unlikely.   NBD is therefore likely to be the preferred 
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TABLE 2: COMPARISON OF  NBD  AND LND2  PARAMETERS

Data NEG BINOMIAL (NBD)            LOGNORMAL   (LND2)
Set p k Xo MU SIGMA
ALLCW14 0.378 0.803 2.47 0.975 0.585
ALLCW O.455 0.87 2.432 0.895 0.536
Deviation % -16.9 -7.7 1.56 8.9 9.1
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distribution applicable to all solvers. 

          As for a theoretical model for LND one can invoke the ‘theory of proportional 

effect’ (Aitchison and Brown 1957) based on stochastic multiplicative process.  Its 

relevance for crossword puzzle errors is explained in Naranan (2010). 

 

3. CROSSWORD  PUZZLES:  DANIEL  PEAKE’S  DATA. 

          All the data so far is from a single solver. Will NBD apply for a different solver, 

especially with different skills, which will be reflected in the mean  m  and the 

standard deviation  s  (or equivalently p,k)?  Fortunately such data is available. 

          Daniel Peake undertook a project “2500 clue challenge”.  The aim was to solve 

at least 2500 clues in the year 2013 of cryptics from The Guardian.  He constantly 

updated the data on his website   

http://danielpeake.com/blog1/2500-clue-challenge/ 

For every one of the 260 weekday puzzles, the number of failures and successes were 

given.   From this,  histograms of the number of successes and failures were made by 

Shuchismita Upadhyay who operates a blog 

http://www.crosswordunclued.com 

She drew my attention to Peake’s work and sent me the histograms suggesting that 

Peake’s data “can be used to refine your study on crossword failures”. 

          To test NBD for Peake’s data, the (p,k) are determined from the mean and 

variance m and s2 of the distributions.  For ‘failures’ (m,s) values are (18.6, 6.0).  In 

Figure 3, the observed and expected (calculated) distributions are shown.  Clearly 

NBD is a poor fit to the distribution of failures.  The reason is fairly obvious.  The 

Poisson distribution and the NBD are valid for ‘rare events’, but here the mean 18.6 is 

a major fraction of the total number of clues in a grid (typically 30). 

          This suggests that one can try to fit to NBD the distribution of ‘successes’.  

From (m,s) = (9.9, 6.1), the (p,k) are determined as (0.263, 3.548).  The observed and 

the calculated distributions are shown in Figure 4. The two seem to be in good 

agreement.  For a χ2-test of the goodness of fit to NBD, one has to group the data in  

  

http://danielpeake.com/blog1/2500-clue-challenge/�
http://www.crosswordunclued.com/�
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Figure 3 

 

 

                                                                      DANIEL PEAKE'S CROSSWORD DATA - UNSUCCESSFUL  CLUES
X  =   # OF UNSUCCESSFUL CLUES

                                                                            N(X) =  NUMBER OF PUZZLES WITH X UNSUCCESSFUL CLUES
TABLE  1

x     N(x) obs   N(x) cal
0 4 0.001
1 4 0.005
2 1 0.025
3 0 0.088
4 1 0.244
5 2 0.564
6 1 1.130
7 1 2.022
8 5 3.285
9 1 4.921

10 2 6.871
11 9 9.023
12 6 11.224
13 6 13.304
14 12 15.101
15 11 16.483
16 11 17.364
17 8 17.708
18 17 17.530
19 23 16.885
20 23 15.858
21 26 14.547
22 20 13.057        Diamonds are the observed values. Solid Line is the best fit
23 14 11.484                                                                                              for values according to the Negative Binomial Distribution
24 16 9.910
25 12 8.401 TABLE 2
26 14 7.003         X N(X) OB N(X) CA
27 7 5.747 0-2 9 0.030
28 1 4.646 3-5 3 0.896
29 1 3.704 6-8 7 6.437
30 1 2.914 9-11 12 20.814
31 0 2.264 12-14 24 39.629
32 0 1.738 15-17 30 51.556

18-20 63 50.273
NTOT 260 255.1 21-25 88 57.399

m 18.581 26-32 24 28.017
s 5.989 NTOT 260 255.1

p=m/s*s 0.518 N(X)OB = NUMBER OBSERVED
k=mp/(1-p) 19.973          N(X)CA = NUMBER CALCULATED AS PER

         NEGATIVE BINOMIAL DISTRIBUTION (NBD)
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Figure 4 
 

 

                                                                      DANIEL PEAKE'S CROSSWORD DATA - SUCCESSFUL  CLUES
X  =   # OF SUCCESSFUL CLUES

                                                                     N(X) =  NUMBER OF PUZZLES WITH X SUCCESSFUL CLUES
TABLE  1

x     N(x) obs   N(x) cal
0 1 2.287
1 4 5.977
2 11 10.011
3 17 13.637
4 13 16.444
5 16 18.286
6 23 19.190
7 19 19.281
8 18 18.726
9 18 17.699

10 31 16.360
11 11 14.842
12 8 13.255
13 8 11.677
14 11 10.167
15 8 8.762
16 6 7.482
17 6 6.337
18 8 5.329
19 6 4.452
20 2 3.697
21 1 3.054
22 2 2.510        Diamonds are the observed values. Solid Line is the best fit
23 0 2.054                                                                                              for values according to the Negative Binomial Distribution
24 2 1.674
25 3 1.358 TABLE 2
26 1 1.099         X N(X) OB N(X) CA
27 0 0.886 0-2 16 18.3
28 1 0.712 3-5 46 48.4
29 2 0.570 6-8 60 57.2
30 1 0.456 9-11 60 48.9
31 1 0.363 12-14 27 35.1
32 1 0.289 15-17 20 22.6

18-20 16 13.5
NTOT 260 258.9 21-25 8 10.6

m 9.923 26-32 7 4.4
s 6.138 NTOT 260 258.9

p=m/s*s 0.263 N(X)OB = NUMBER OBSERVED
k=mp/(1-p) 3.548          N(X)CA = NUMBER CALCULATED AS PER

         NEGATIVE BINOMIAL DISTRIBUTION (NBD)
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intervals.  In Table 2 in the figure, the grouped data are shown.  With nine groups the 

ndf  is 6 and the  χ2  = 7.9, making the NBD hypothesis acceptable.  

          The contrasting behaviour of  NBD for ‘successes’ and ‘failures’ is a 

vindication of the rationale for the choice of NBD.  The model for NBD as ‘mixture 

distribution’ – a superposition of many Poisson distributions with their parameters  𝜆𝜆′s  

(the mean values) distributed as a Gamma distribution – is now valid for two sets of 

data (of two solvers) in widely differing domains of the (p,k) space. 

 

4. COMPLEXITY  OF  A  COMPOSER’S PUZZLE. 

          One solver of many puzzles by different composers, provides an average 

measure of complexity of puzzles for the solver.  One can consider the complementary 

problem of a composer estimating the complexity of his puzzle(s) by soliciting data 

from his solvers.  In general, a composer has no quantitative data about the complexity 

of his puzzle for the solvers.  We propose an experiment to get a distribution N(x) vs x 

where N(x) is the number of solvers with  x  failures/successes.   

          A solver sends an SMS 

Puzzle #,               # of  failures                # of  successes 

an unsigned, therefore anonymous message to the composer.  A suitable cap on the 

time allowed – say a week – is suggested. 

          There are practical problems, mainly related to uncertainties in solver behaviour 

and possible biases (e.g. poor solvers may not want to communicate).   We return to 

the topic later in Section 8. 

          From the distribution of errors (m,s) can be calculated.  These two parameters 

give a broad estimate of the complexity of the puzzles:  the mean m defines the 

average and the standard deviation s  the spread or the tail of the distribution.  These 

are model-independent measures of complexity.  But (m,s) does not define the details 

of the distribution over the entire range of errors.  The NBD offers the solution.  The 

(p,k) are determined from  m  and s  as 

p= m / s2         and              k = m p / (1-p) 

The entire error distribution can be calculated and its conformity to data can be 

decided by a  χ2-test as described in Section 2.1. 
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          Ideally the NBD is a good fit when the mean  m of errors is small.  It will also 

work when the mean of the successes is small.  But in practice, NBD seems to a 

robust distribution, tolerant of deviations from the theoretical constraints.  But the 

hypothesis of NBD can be tested and rejected based on observations. 

 

5. SIMULATIONS OF NBD:  DIFFERENT  LEVELS  OF  SOLVERS’  SKILL. 

          How does NBD appear for wide-ranging complexity as parameterized by (p,k)?   

In Figure 5 NBD is plotted for four sets of (p,k) values representing increasing levels 

of complexity.  As a convenient measure of solver skill we adopt X* the value of  x  

that corresponds to the maximum probability or P(X*) is a maximum.   Since X* takes 

only discrete values  P(X*+1) = P(X*).   From the NBD recurrence relation (eq. 3b) 

P(X*+1)/P(X*) = (1 – p) (k+X*)/(1+X*) 

Setting the above equal to 1 and solving for k 

k = (1+pX*)/(1 – p) 

For any desired X* and a specified value of  p , k can be calculated.  For example for 

Level 1, X* is taken as 9.  If p = 0.2 then k = 3.5.  This gives the Level 1 parameters. 

1               9            (0.2, 3.5) 

Level            X*            (p,k) 

2               5            (0.5, 6.5) 

3               3           (0.8, 17.0) 

4               1          (0.95, 39.0

Note P(X*) = P(X*+1).  In Figure 5, one can check the positions of the maxima X* 

(9, 5, 3, 1) corresponding to Levels 1 to 4.     

) 

 

6.  PREDICTIVE  POWER  OF  NBD. 

            The two parameters that fully characterize NBD, (p,k) are derived from (m,s) 

of the entire range of observed distribution of errors.  However, it is in principle 

possible to obtain (p,k) from any two given probabilities for errors, say P(0) and P(1), 

i.e. the error probabilities for no errors and one error.  From the recurrence relations 

(equation 3) 

                     P(0)  =  pk            and              P(0)/P(1)  =  [1/k (1 – p)]                (7 a,b) 
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Figure 5 

                          Explore NBD with wide range of 'complexity' of puzzles
                                                                                                            SIMULATION OF n(x) EXP FOR A WIDE RANGE OF NBD PARAMETERS (p,k)

SAMPLE SIZE  N = 10000

Figure 1
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Putting  

                         P(0)/P(1) = r01       and              G = r01 log P(0) 

and eliminating k  

                                                  p  =  10 ^ [G (1 – p)]                                                 (8)       

Here log is logarithm to base 10.  The above equation can be solved for  p  since G is 

known.  Since p appears in the exponent on the right and also on the left side, the 

solution is obtained by the method of successive approximations. 

          We illustrate the method with observed P(0) and P(1) for ALLCW14 (Table 1).  

Here  

P(0) = 2500/5484 = 0.4559     and     P(1) = 1246/5484 = 0.2272. 

r01 = 2.0066,   G = -0.6845 

Substituting in equation (8) 

p  =  10 ^ [-0.6845 (1 – p)] 

To solve for p start with an initial value p0 (say 0.5) on the right to calculate p1 on the 

left.  Then use p1 on the right to calculate p2........  The sequence p0  p1  p2.......rapidly 

converges to the desired solution.  The first few iterates are 0.5, 0.4547, 0.4234, 

0.4030.  To obtain accuracy to four decimal places, 15 iterations give p = 0.3712.  k  

can be obtained from equation 7(b) as  k = 0.7925. 

          The parameters (p,k) = (0.371, 0.793) can be used to predict the expected 

number of  x  errors for  x > 1.  Comparing with the (p,k) obtained from (m,s) – (0.378, 

0.803) - these values are less by < 2 %.  The latter values are the more accurate since 

they use the entire data, not just P(0) and P(1).  Both the sets of (p,k) when fitted to 

data yield comparable  χ2 values when subjected to test of NBD hypothesis, viz. 12.8 

and 11.6 for ndf = 11. 

          This ‘short-cut’ to (p,k) works well only when P(0) and P(1) together account 

for a large proportion of the sample NT.  In the present case they contribute 68.3 % 

(3746 out of 5484).  Although it is tempting to invoke the predictive power of NBD, 

its true merit is the fact that it fits the entire data extending over a wide range (x = 0 – 

15) with just two free parameters.  This fit can be objectively validated by the χ2-test. 
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7.  ONE PUZZLE, MANY SOLVERS:  WORD PUZZLE LOTTERY. 

          In 1940’s and 1950’s word puzzle lottery was very popular in India.  Most 

puzzles had the following features.  (1) 18 clues each with two equally probable 

answers, say H or T. (2) An entry consists of all the 18 answers filled in.  It is 

submitted with a fee.  The promoter receives millions of entries. (3) Each entry is 

compared with a ‘correct’ list of answers with the promoter.  Cash prizes are offered 

for entries with no errors and errors 1, 2 and 3. 

          Usually the entries are filled by ‘solvers’ in a random fashion, like flipping a 

coin for each clue to fill in H or T.  But this is a hypothesis that needs to be tested.  

          Here we review the results presented in my paper ‘Word Puzzles and the Laws 

of Chance’ (http://vindhiya.com/snaranan/wordpuzzlelottery/wordpuzzlelottery-

2ss.pdf) in 2011.  Treating the flips as Bernoulli trials with two possible outcomes 

with probabilities  u and (1-u), the Binomial distribution gives the relative 

probabilities of entries with number of errors  x = 0,1,2,3........18.  In the present case  

u = 0.5.  (See Figure 6).  The mean is 9.0 and the standard deviation is 4.5.  The 

distribution is symmetric about x = 9 with most weight in the range  x = 7 – 11.  Less 

than 0.4 % contribution is in the low x tail (x < 4).   

           Published results are available only for x < 4, for which prizes are offered.   

The total number of different possible entries is  218 or 262,144.  Of these the number 

of entries with x = 0,1,2,3 are in the proportion 1:18:153:816.  Results from 12 puzzles 

are presented in Table 3.  They are in broad agreement with the predictions. 

            In Section 4, we had posed the problem of ‘one puzzle, many solvers’ for the 

cryptic puzzle, with the intent of quantifying the complexity of a composer’s puzzles.  

Various difficulties, known and unknown make the project a complex one to 

implement. 

          In contrast, in word puzzle lottery, we have a ‘text-book example’ of a social 

experiment tailor-made to test the Binomial distribution, since it has well defined 

probabilities of success and failure.   In a string of  n Bernoulli trials, the probability 

of  x  failures and  n-x  successes is given by the Binomial distribution: 

                          BD:  P(x,n) =  (𝑥𝑥𝑛𝑛 ) ux  v(n-x)     (x = 0,1,2,3.....n),                   (9) 

 

http://vindhiya.com/snaranan/wordpuzzlelottery/wordpuzzlelottery-2ss.pdf�
http://vindhiya.com/snaranan/wordpuzzlelottery/wordpuzzlelottery-2ss.pdf�
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Figure 6 
 

Table 
X n(X)
0 1
1 18
2 153
3 816
4 3060
5 8568
6 18564
7 31824
8 43758
9 48620

10 43758
11 31824
12 18564
13 8568
14 3060
15 816
16 153
17 18
18 1

TOT 262144
BINOMIAL DISTRIBUTION
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WORD  PUZZLE  LOTTERY

Each puzzle has 18 clues

Each clue has two equally probable answers

A puzzle filled with all the 18 answers is an entry

x = # of 'incorrect' answers in an entry

N(x) = # of entries with x incorrect answers

Table gives the N(x) for x = 0,1,2,3 aggregated

 for 12 puzzles

N(x<4) = Total number of entries (x=0,1,2,3).

x N(x) OBS N(x) EXP OBS-EXP % DEV

0 43 83 -40 -48.193

1 1353 1502 -149 -9.9201

2 12826 12749 77 0.60

3 68124 68012 112 0.1647

N(x<4) 82346 82346

                                                                      THE ESTIMATED TOTAL NUMBER OF ENTRIES 

                                                                       IS ABOUT 22 MILLION  
 

Table 3 
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Here (𝑥𝑥𝑛𝑛 ) is the number of combinations of  x different objects from a collection of  n  

objects, the particular order of the selected objects being irrelevant. 

           (𝑥𝑥𝑛𝑛 ) = n(n-1)(n-2)(n-3).......(n-x+1)/x! 

The number of clues n (=18) is not large and the probabilities are not small (u = v = 

0.5), but the Binomial distribution works for all n and u and no approximation is 

involved as in the case of Poisson and Negative Binomial distributions. 

          There is only one correct solution in the lottery as in the cryptic, but the 

distinction is that in the lottery every permutation of 18 answers (H or T) has an equal 

chance of being the correct solution whereas in cryptic there is no ambiguity in the 

clue answers.  Being a lottery, the number of entries is very large (typically millions) 

ideal for testing the tails of BD.  But error data are available only for  x = 0,1,2,3 the 

low end tail of BD which accounts for only 0.4 % of the total. 

 

8. CONCLUDING  REMARKS. 

          The  motivation  for the analysis on the distribution of the number of unsolved 

clues in cryptic puzzles was to put a ‘numerical label’ to the average puzzle which is a 

measure of the ease/difficulty of its solution by the solver.  In doing so, one goes 

beyond the qualitative labels ‘easy’, ‘moderate’, ‘hard’.  Lord Kelvin, as quoted in the 

opening of this paper, noted that by expressing in numbers, our ‘knowledge’ advances 

to the state of ‘science’.  The Absolute Temperature scale (oK) used in physics is 

named after Lord Kelvin.  The zero of the scale (0oK) is -273.16 oC (Celsius).  It is 

fundamental to the science of Heat and Thermodynamics. 

          From the raw data on the distribution of errors one obtains the mean and 

standard deviation (m,s) which serve as numerical measures of complexity.  But they 

under-utilize the available data.  In finding the Negative Binomial Distribution (NBD) 

as an appropriate function to describe the whole range of errors (x = 0-15), one has 

advanced one more step towards the ‘science’.  Science allows an exploration of the 

genesis of the statistical distribution that leads to an understanding of the solver 

behaviour. 

          The data base of 5484 puzzles for error distribution presented here is perhaps 

unique in the study of solver behaviour.  It is only for one solver.  I was seeking data 
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from other solvers. Daniel Peake’s data based on 260 puzzles, not only provided one 

more solver but also a different domain of average complexity.  NBD is a good fit also 

for Peake’s results. 

 But NBD is not alone !  A 3-parameter lognormal distribution (LND2) is also 

an adequate fit to the error data.  This dichotomy may be valid only ‘rare events’ 

regime and not for all levels of solver skill. 

          There remains the complementary problem of ‘compiler behaviour’.  Does a 

composer or compiler of a puzzle have any knowledge of the complexity of his puzzle 

for the average solver?  To my knowledge, there is not adequate solver feedback to the 

compiler that can help put a numerical label on the puzzle. In fact, the compiler needs 

to have a measure of the complexity of his puzzles as an indispensable aid in the 

construction of his puzzle.  It is not difficult to make a puzzle extremely hard that can 

confound the solver and turn him away from such puzzles.  A good compiler is one 

who balances clues of different levels of difficulty while avoiding crosswordese, 

arcane words that seem to be especially suited to construct a grid of interlocking 

words.  Just as in any social enterprise, in crossword puzzles too, there is a ‘code of 

conduct’ for the compiler.  In the words of Don Putnam, a popular compiler of ‘plain 

and novelty’ cryptics: “the compiler, whenever he prepares for battle, must prepare for 

a battle which he eventually intends to lose.  Puzzles which are too hard for his 

average solver to complete are comparative failures”. A proposal for assessing 

compiler complexity was given in Section 4.  It requires a well coordinated effort by a 

group of devoted solvers who voluntarily provide the feedback to the compiler. With 

the large number of solvers as in the daily The Hindu, one can hope for large sample 

size far exceeding what a single solver can achieve. 

          A significant result from my analysis is that the total sample need not be 

homogeneous, i.e. it can comprise of diverse sources spread over space and time – 

newspaper dailies across continents and across ages – puzzles of varying levels of 

difficulty.  The model proposed (NBD) for the error distribution indeed incorporates 

such diversity.  Models come with some theoretical constraints, but the results of 

analysis show robustness tolerant of flexibility in them.  
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          The compiler’s data base is the feedback from his solvers, the distribution of 

errors; in this case N(x) is the number of solvers with  x  errors.  Tolerance to diversity 

noticed in the case of different puzzles can also be assumed for different solvers.  For 

example, it is not necessary the solver should communicate regularly; there can be 

random skipping of puzzles. There need be no time limit for solving a puzzle;  the 

solver can decide when he wants to declare closure on his efforts and settle for the 

final error score.  (It is my experience that one reaches a grid-lock that cannot be 

unravelled in any reasonable time).  But certain amount of discipline among solvers is 

desirable especially in avoiding biases, e.g. not communicating a poor score.  It is easy 

to communicate by cell-phone or e-mail in anonymity if desired.  It is the task of the 

compiler to collect the data and process it to the point of tabulating N(x) vs. x.  Further 

analysis – getting (m,s), (p,k) and testing goodness of fit to NBD – can be left to those 

interested.  

 Crossword puzzle failure data are not just trivia.  The number tags on errors 

provide the tools for progressing from mere ‘knowledge’ to ‘science’ in the spirit of 

Lord Kelvin.  The formulation of NBD for my error data was extended to another 

observer, providing  significant support for the conjecture of universality of NBD for 

all solvers.  The robustness of NBD encourages further organized efforts by groups of 

solvers, despite the inherent inhomogeneities in solving behaviour.  Thus the scientific 

approach widens the horizons of area of research, while at the same time bringing 

about unity in diversity and a simplification of the underlying mechanisms.  This is 

illustrated by the finding that failures in clue solution are like flips of a random 

assortment of biased coins, with varying degrees of probability, say of tails (failures).  

To the rhetorical question “What is common to car accidents, purchase of branded 

products and crossword error scores?”, the answer is NBD!  The common underlying 

mechanism is the mixture of Poisson and Gamma distributions. 

 Cryptics and word puzzle lotteries are two extremes on the scale of puzzles 

graded by skill.  Cryptics require different levels of linguistic skill whereas the word 

puzzle lottery is devoid of any solver skill.  However the results are predictable in 

both.  NDB for cryptics and BD for lotteries both have a common origin as reflected 

in their titles;  this is unification. 
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 It is revealing to ponder this common origin.  The BD’s progenitor is the 

Binomial theorem which was originally formulated for a positive integral value of the 

power  n  in (u+v)n.  In the BD the number of Bernoulli trials  n  is a positive integer.  

But as the Binomial theorem is extended to negative and not necessarily integral 

values, it is clear that Bernoulli trial model would not work.  But the NBD with a 

negative real index (-k) does have a real-life application as described in the paper.  

This illustrates the sense of wonder articulated by Einstein.  “How can it be that 

mathematics being after all a product of human thought,  is so admirably adapted to 

the objects of reality?” 

 To go deeper into the science, one needs the tools of mathematics and statistics.  

Some of these topics are relegated to the Appendices which duplicate parts of the 

main text, to ensure that they can be read independently.  In particular the last 

appendix ‘Interrelationship of some statistical distributions’ has no direct relevance 

for the article and is added to illustrate the unity underlying disparate entities. 
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A P P E N D I C E S 

 

A1.  SUPERPOSITION  OF  NBD’S. 

          In Section 2.1, it was stated that NBD is a good model for distribution of errors, 

because it incorporates the diversity of the puzzles as reflected in differing degrees of 

complexity of the puzzles.  This was demonstrated in Naranan (2010), and here we 

review the proof.  The next step is to consider superposition of different groups of 

data, each of which is an NBD.  It is shown that the result is again an NBD. 

 In Naranan (2010) it was shown that NBD arises as ‘mixture’ of Poisson and 

Gamma distributions.  The essential steps are as follows.  Poisson distribution (PD) 

has one free parameter  λ 

                      PD:  Prob (x) = P(x) = exp(−𝜆𝜆) 𝜆𝜆𝑥𝑥 / x!       (𝜆𝜆 > 0, x = 0,1,2....)        (A1) 

Consider many PD’s superposed with a spectrum of  λ  values which can be expressed 

as a Gamma distribution 𝛤𝛤(λ ): 

                      GD:  P(λ) = exp (-λ/β) λ α-1 / [Γ(α) β α]           (α, β > 0)                     (A2) 

It has two parameters  α the shape parameter and β the scale parameter.  The GD is 

structured similar to PD and is an appropriate choice for the distribution of  λ.  The 

resulting mixture distribution is 

MD:  P(x) =  ∫ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 (𝑥𝑥|𝜆𝜆) 𝛤𝛤(𝜆𝜆) 𝑑𝑑𝜆𝜆∞
0  

MD has the same form as NBD 

                     NBD:  P(x) ={Γ(k+x)/[ Γ (k) x!]}  pk qx       (k > 0,  x = 0,1,2......)       (A3) 

with  q = 1-p  

k  =  α            and              p = 1/( β +1) 

The mixture distribution model mirrors closely the real world of crossword puzzles.  

The basic character of errors is Poissonian, but the total sample of puzzles is a mixture 

of puzzles with varying complexity (𝜆𝜆). 

 A remarkable outcome of the MD is that the NBD parameters (p,k) are 

completely determined by the GD parameters.  A superposition of NBD’s, therefore is 

equivalent to a superposition of GD’s  with  (αi, βi)  (i = 1,2,3....).  It is well known 

that a superposition of GD’s is also a GD, provided all the constituent GD’s have the 

same  β, or  βi = β  for all i.  There is no restriction on αi’s (Keeping 1962). 
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 Since  β = (1 - p)/p all the p’s of the constituent NBD’s must be the same for 

the superposition to remain an NBD.  As  p = m/s2, a measure of over-dispersion, both 

m and s2 may vary in tandem to keep their ratio constant.  The above result can be 

derived by a standard formal technique of cumulant generating functions to find the 

distribution of a superposition of multiple distributions. 

 To summarize, multiple sets of data on error statistics of crossword puzzles, 

each conforming to NBD, can be lumped together to yield an NBD, provided the 

constituent sets have the same over-dispersion. 

 In the real world, observed statistical distributions are known to be robust and 

stable with respect to the constraints of theory.  There is theoretical justification for 

this robustness (Feller 1972).  However part of the robustness can be attributed to the 

generally limited sample sizes masking the deviations from theoretical expectations. 

 It was mentioned in the Introduction that the original data of 3404 puzzles 

consisted of four diverse sets of data.  The individual sets as well as the cumulated set 

conformed to NBD.  It can be seen from the (p,k) values that three of the four 

constituent sets had the same p (≈ 0.460) and the fourth had a higher value (0.629).  

The cumulated set (ALLCW) had p = 0.455 (Naranan 2000). 

 

A2. INTERRELATIONSHIP  OF  SOME  STATISTICAL  DISTRIBUTIONS. 

 Here we review the connections between several distributions that have figured 

in our paper.   (See Box 1).  At the top is the ‘mother of all distributions’, the 

Binomial distribution (BD) based on Bernoulli trials.   Each trial has only two 

outcomes:  ‘failure’ with probability  u  and ‘success’ with probability  1-u.  In a string 

of  n independent trials the probability of  x failures and  n-x successes is given by BD. 

                                BD:  P(x,n) =  (𝑥𝑥𝑛𝑛 ) ux  v(n-x)     (x = 0.1.2,3.....n),                      (A4) 

Here  

           (𝑥𝑥𝑛𝑛 ) = n(n-1)(n-2)(n-3).......(n-x+1)/x! 

The name ‘Binomial’ arises from the fact equation (A4) is the  xth term in the binomial 

expansion (u + v)n.  The mean m and variance  s2 of BD are 

m = n u          and          s2 = n u (1 – u) 
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 Box  1 
  

INTER-RELATIONSHIP 0F SOME STATISTICAL DISTRIBUTIONS
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For BD  m  > s2 since u < 1. 

 When the number of trials  n  is large and  u  is low (rare events) such that 

nu= 𝜆𝜆  is small, then BD becomes PD. 

                      PD:  Prob (x) = P(x) = exp(−𝜆𝜆) 𝜆𝜆𝑥𝑥 / x!       (𝜆𝜆 > 0, x = 0,1,2....)        (A1) 

with                                                 m  =  s2  =  𝜆𝜆 

PD is a discrete distribution.  The Gamma Distribution (GD) is Poisson-like but takes 

continuous values for x 

                      GD:  P(x) = exp (-x/β) x α-1 / [Γ(α) β α]           (α, β > 0)                     (A5) 

Here                                m  =  α β          and          s2 =  α β 2 

When  β  the scale parameter is 1,  m = s2  as in PD. 

  As described in Appendix A1, the Negative Binomial Distribution (NBD) is a  

mixture  distribution MD which is a convolution of Poisson and Gamma distributions. 

                     NBD:  P(x) ={Γ(k+x)/[ Γ(k) x!]}  pk qx       (k > 0,  x = 0,1,2......)       (A3) 

BD can be rewritten using factorials as 

                  BD:  P(x,n) =  { Γ(n)/[ Γ(n-x)x]}! ux  v(n-x)     (x = 0.1.2,3.....n)               (A5) 

The  correspondence  between BD and NBD is: 

n     →     k + x            u     →      q          v     →     p 

for  k  a positive integer. 

 The BD can be generalized to negative values of  n  since the Binomial 

theorem from which BD is derived is valid for n < 0.   It can be shown that NBD 

behaves like a BD with a negative power index. The coefficient in BD  (𝑥𝑥𝑛𝑛 ) has the 

index  n  a positive integer.  For a negative index  k 

 (𝑥𝑥−𝑘𝑘) = -k (-k-1)(-k-2).................(-k-x+1) / x! 

                                           = (-1)x (k+x-1)..............(k+2)(k+1)k / x! 

                                           = (-1)x (      𝑥𝑥
𝑘𝑘+𝑥𝑥−1) 

                                           = (-1)x{ Γ (k+x)/[ Γ (k) x!)]}  

or                                  { Γ (k+x)/[ Γ (k) x!)]} = (-1)x (𝑥𝑥−𝑘𝑘) 
Substituting the above in NBD equation (A3) 

NBD:  P(x)  =  pk  (𝑥𝑥−𝑘𝑘 )(-q)x                (x = 0,1,2....) 
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The above can be viewed as  pk  times the xth coefficient in the binomial expansion of 

(1 – q)-k 

with a negative power index  -k.  The interrelationship of BD, PD, GD and NBD is 

shown in Box 1. 

 When the sample size  n  the power index of the BD (equation A5) is very large 

the BD becomes the normal distribution (ND). 

                         ND: P(x) = (1/σ√2π )  exp [-(x-µ)2/2 σ2]          -∞ < x < +∞              (4) 

Here the mean µ  = n u  and the variance  σ2 = n u(1-u).  As  n increases, σ   which is 

proportional to √n increases;  so the distribution becomes broader and more 

symmetric.  Skewness, a measure of the asymmetry is  (1 – 2u)/ σ.  It is exactly 0 only 

when  u = 0.5, but tends to 0 as  n  increases. 

 The ND variously called ‘normal’, ‘Gaussian’ or the ‘bell curve’ is also called 

– very appropriately for our purposes – the ‘curve of error’.  It is perhaps the most 

important of all distributions in statistics (Keeping 1964).  An important variant of ND 

is the lognormal distribution LND1.  In LND1, instead of  x  it is  ln x  which is the 

variate. 

                    LND1:  P(x) = (1/σ√2π )(1/x)  exp [-(ln x-µ)2/2 σ2]          x > 0              (5) 

Here ln x is the natural logarithm of x.  Whereas ND is symmetric, LND1 is 

asymmetric with a long tail just like the NBD, with two parameters  µ and σ. 

 In another variant of ND - the LND2 -  ln (x+Xo) is the variate. 

      LND2:  P(x) = (1/σ√2π )[1(/x+ X0)]  exp {-[ln( x+ X0)-µ])2/2 σ2]}      x > 0       (6) 

X0 is a constant, positive or negative (Cramer 1953).  When  X0  = 0, LND2 reduces to 

LND1. 

 The distribution of errors in crossword puzzles (x) is equally well described by 

NBD and LND2.  This dichotomy may exist only in the ‘rare error’ regime, i.e. when 

the mean number of errors is small.  We have not established a direct link between 

NBD and LND2, although both are traceable to the BD (Box 1).  LND2 requires three 

free adjustable parameters and is the less preferred compared to NBD which has only 

two parameters. 
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                                                                                          CROSSWORD  PUZZLES - "ERROR" (FAILURE)  ANALYSIS
             COMPARISON OF BINOMIAL (BD), POISSON (PD) AND
                   NEGATIVE BINOMIAL (NBD) DISTRIBUTIONS
                               p(x) = probability of  x  failures.   (x=0,1,2….)

                BD          PD NBD

p(x)     nCx. u^x.v^(n-x) exp(-λ).λ^x/x! [Γ(k+x)/([Γ(k) x!)] p^k.q^x

Parameters   n= #of clues in grid        λ (>0) k (>0), [Γ(k)=(k-1)[Γ(k-1), k>1

u=prob of failure (<<1)      [Γ(k) =( k-1)! (k integer)

              v=1-u          p (<1),  q=1-p

Mean  m                  nu            λ                k(1-p)/p

Variance (s*s)            nu(1-u)             λ             k(1-p)/(p*p)

D = m/(s*s*)             1/(1-u) 1                        p

Recurrence Rel of p(x)         p(0) = (1-u)^n p(0) = exp (-λ)                 p(0) = p^k

 R(x)=p(x+1)/p(x)  [1/(1+x)] (n-x)u/(1-u)    [1/(1+x)].λ      [1/(1+x)] (k+x)(1-p)

Given p(x*) is max        u=(1+x*)/(1+n)       λ=1+x*       k=(1+px*)/(1-p)

Parameters u=1-(s*s)/m =1-(1/D)     λ=m=s*s          p=m/(s*s) = D

   in terms of m,s*s            k=mp/(1-p)

Variable  x is positive integer.  p(x*)=p(x*+1).  

All possible values of D are covered: D >1 (BD), D=1 (PD), D < 1 (NBD)

Crossword puzzle data favor D < 1 (NBD).  Simulations done for BD, PD too

Approx:  BD   tends to PD when n is large, u is small and nu =λ(small)

NBD tends to PD when k is large, q is small and kq =λ(small)

Table 4 
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 Finally we mention the   χ2- distribution that is used for testing hypothesis.  The 

χ2-distribution is actually a Gamma distribution with its variate related to the 

standardized normal variate  z = (x – µ)/ σ. 

In Table 4 is given a comparison of the properties of three discrete 

distributions, Poisson, Binomial and Negative Binomial Distributions. 
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