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ABSTRACT 

 

 Crossword puzzles are the most popular form of linguistic puzzles;  for the 

solver they are intellectually challenging and entertaining as well.  An interesting 

exercise for this author, a keen solver of the British style ‘cryptic’ crossword puzzles, 

has been the statistical distribution of the number of unsolved clues (x) in a puzzle.  

Data are cumulated over a decade (total number of puzzles 3404).  The large sample 

size makes it possible to examine the tail of the distribution at large x, up to 12.  It is 

found that the Poisson Distribution with one free parameter (λ) is inadequate, but the 

Negative Binomial Distribution (NBD) with two free parameters (p,k) fits the 

distribution well as vouched by a χ2-test.  The NBD can be interpreted as a “mixture” 

of Poisson and Gamma Distributions .  It is suggested that this is an appropriate model 

for the distribution of x. 

 Surprisingly, a 3-parameter Lognormal Distribution (LND2) also fits the 

observed distribution of x equally well.  The popular model for LND – ‘theory of 

proportional effect’ – does have some relevance for the crossword puzzle solving.  It 

appears that the dichotomy (NBD and LND2) exists only for a limited range of (p,k) 

of the NBD. Both the NBD and LND2 have wide application in many branches of 

science.  It is conjectured that NBD may apply to all crossword puzzles and all 

solvers.  The present work has relevance to linguistics, especially the co-existence of 

random and orderly features as reflected in the many statistical regularities of 

language texts.  
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1. INTRODUCTION 

Crossword puzzles are the most popular word puzzles and are daily features in 

almost all the widely read newspapers and magazines in the world.  Typically a 

puzzle consists of a square grid (say 15 x 15) with words, ‘across’ and ‘down’ 

(crosswords) delineated by a symmetrically-placed set of black squares.  The number 

of words is about 30 (28 to 34 in most 15 x 15 grids) roughly shared equally by 

‘across’ and ‘down’ and each crossword is the solution of a ‘clue’ accompanying  the 

grid.  Occasionally a clue can include more than one crossword.  The placement of the 

black squares is subject to the condition that the grid pattern remains the same when 

rotated by 1800.  To begin with, the grid is blank and the solver has to fill in the words 

with the help of the clues. 

Crossword puzzles can be broadly classified into two types: (1) the American 

style and (2) the British style (cryptic).  There is considerable difference between the 

two in the grid structure, types of words and the style of the clues.  In Britain, Europe 

and India the cryptic puzzles are very popular.  The puzzle described in the previous 

paragraph is an example of cryptic puzzle. 

In this study we consider only the cryptic crossword puzzles.  An interesting 

statistic worthy of investigation by a solver is the probability distribution of the 

number of unsolved clues in the grid or the number of incomplete words (“failures”).  

The distribution clearly depends on many factors including the skills of the composer 

and the solver and the clueing style.  But these are not generally relevant for the 

purely statistical study.  We will discuss this aspect later. 

 

2. CROSSWORD PUZZLES:  DATA ON FAILURES IN SOLUTION. 

I have been an enthusiastic solver of crossword puzzles for over 40 years.  In 

my active professional life in Mumbai, the puzzles were from the daily ‘Times of 

India’ and later after my retirement in Chennai, from the daily ‘The Hindu’.  When 

the idea of a statistical study of failures arose about 25 years ago, I started to 

standardize my style and strategy of solving and recorded the number of unsolved 
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clues (failures).  The results are data accumulated over five years (1987-1991) for 

‘Times of India’ (TOI) puzzles and over five years (2004-2008) for ‘The Hindu’ (TH).  

They are presented in Table 1. 

Table 1.  Crossword Puzzles:  Failure Analysis Data 

 HW HS TW TS ALLCW 
X N(OBS) N(OBS) N(OBS) N(OBS) N(OBS) 
0 598 70 933 124 1725 
1 340 52 340 49 781 
2 241 54 119 29 443 
3 134 24 48 13 219 
4 65 13 16 9 103 
5 48 11 10 3 72 
6 17 4 1 3 25 
7 9 1 1 3 14 
8 8 1   9 
9 4 2   6 
10 1 3   4 
11      
12 1    1 
13 2    2 

TOTAL 1468 235 1468 233 3404 
      

      HW: The Hindu Weekdays   
HS: The Hindu Sundays,    
TS: The Times of India Sundays,  .   
TW: The Times of India Weekdays   
ALLCW:  Sum of all preceding four   

       

     

   
Weekday and Sunday crossword puzzles are analyzed separately because they 

are clearly of different types:  while the weekday puzzles are “Indian” with local 

flavor, the Sunday puzzles are of British origin with allusion to British life and locales 

and are distinctive in their clueing pattern.  This is true both for TOI and TH Sunday 

puzzles.  N (OBS) are the number of puzzles with the number of failures (x) equal to 

0,1,2…Values of  x  are in column 1 and N (OBS) in columns 2 to 6.  The last column 
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is for the totality of puzzles (sum of columns 2 to 5).  We note at a first glance: (1) the 

number of failures can be as high as 10 – the distribution in  x  has long tails.  For 

example for ALLCW, out of a total of 3404 puzzles only 1725 (about 50 %) account 

for no failures  (x = 0) and about 1 % account for x ≥ 7.  (2) There is considerable 

variation in the distribution of  x  in the four categories HW, HS, TW and TS. 

 

3. NEGATIVE BINOMIAL DISTRIBUTION FOR THE PROBABILITY OF 

FAILURES. 

We can consider the observations as an example of random count data of 

integer values (x = 0,1,2….).  The first choice to fit such a distribution is usually the 

Poisson Distribution (PD), which depends only on one parameter  λ. 

                     PD:   Prob (x) = e-λ  λx / x!            (λ > 0, x = 0,1,2…)         (1) 

(Verify that the sum of Prob (x) over all possible integer values of   x  is 1).  Given a 

numerical value for  λ  the PD can be obtained for all  x.  The two most fundamental 

measures of any frequency distribution are the mean (m = <x>) the weighted average 

of  x  and the standard deviation  s (=√ (<x2> - <x>2)).  For PD it is easily seen that  

m  =  s2 and further both equal λ.  So the Poisson parameter  λ  is actually the mean  m  

of the distribution. (See for example Feller 1972) 

 When variance  s2 exceeds  m  the data is ‘over dispersed’ with a long tail and 

an additional parameter, besides  λ  is required to characterize the distribution.  The 

Negative Binomial Distribution (NBD) is often invoked for such data (Feller 1972). 

The probability distribution or the density function is given by 

              NBD:  P(x) = Prob (x) ={Γ(k+x)/[ Γ(k) x!]}  pk qx     (k > 0, x = 0,1,2…)   (2) 

where  p  and  k  are the two parameters and  q = 1 – p.  Here Γ(k) is the Gamma 

function defined by  

Γ(k) = (k – 1) Γ(k – 1)    for   k > 1 

When  k  is an integer  Γ(k) = k(k-1)(k-2) ….1 = k!.  Γ(1) = 1. 
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Table 2. Negative Binomial fits to failure data 

  HW  TW  HS  TS  ALLCW  
X N(OBS) N(EXP) N(OBS) N(EXP) N(OBS) N(EXP) OBS EXP OBS CAL 
0 598 584 933 932 70 70 124 121 1725 1716 
1 340 375 340 339 52 59 49 55 781 813 
2 241 222 119 125 54 41 29 28 443 414 
3 134 127 48 46 24 26 13 14 219 216 
4 65 71 16 17 13 16 9 8 103 114 
5 48 40 10 6 11 10 3 4 72 60.54 
6 17 22 1 2 4 6 3 2 25 32.30 
7 9 12 1 1 1 3 3 1 14 17.28 
8 8 7     1 2     9 9.27 
9 4 4     2 1     6 4.98 
10 1 2     3 1     4 2.68 
11 0 1             0 1.45 
12 1 1             1 0.78 
13 2 0             2 0.42 

TOTAL 1468 1468 1468 1468 235 235 233 233 3404 3404 
m 1.388   0.578   1.813   1.013   1.042   
s 1.730   0.958   1.972   1.490   1.514   

ndf 7   3   4   3   8   
chisq 9.75   3.10   6.44   1.21   9.70   

 

 In Table 2, the mean  m and the standard deviation  s are given for HW, TW, 

HS and TS (e.g. for HW  m = 1.3876, s = 1.7302).  Clearly variance  s2 exceeds  m  in 

all cases and it is worth trying a fit to NBD.  The parameters  p  and  k  of NBD can be 

derived from the data (m and  s): 

p = m / s2       and         k = m p / (1-p) 

Knowing  p  and  k, Prob (x) can be easily calculated with the recurrence relations 

(implied by equation 2): 

                                                 P(0) =  pk                 (x = 0)                                      (3a) 

                                   P(x+1) = P(x) [q (k+x)/(1+x)]  (x = 1,2…n-1)                      (3b) 
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These probabilities are multiplied by  NT (total number of puzzles in the category 

given in the last row of Table 1) and given in Table 2 as  N (EXP) (columns 

3,5,7,9,11).  It is a pure coincidence that NT  is the same for HW and TW (1468) . 

 Even a casual comparison of  N (OBS)  (repeated from Table 1) and N (EXP)  

suggests very good agreement between the two since in most cases the absolute 

difference  |N (EXP) – N (OBS)|  < √N (EXP), the sampling error.  However, a more 

objective test for ‘goodness of fit of a hypothesis’ – in this case the NBD – to 

observed data is the ‘χ2-test’(chi squared test). The χ2 is given in a quasi-symbolic 

form as (O-E)2/E  summed over all the observed (O) and expected (E) values of N for 

x = 0,1,2… The χ2 values and the number of degrees of freedom  ndf are given in 

Table 2.  Here  ndf = n-1-l where  n is the number of pairs (O, E) and l is the number 

of parameters derived from the data (Cramer 1955).  Here  l = 2 and  ndf = n – 3.  For 

example for HW, χ2 = 9.75 and  ndf = 7.  From the χ2 tables (Cramer 1955) one finds 

that for ndf = 7, χ2 will exceed 12.00 with a probability 0.1 (a value generally adopted 

for testing goodness of fit).  Similarly for ndf =8, 4, 3, χ2 will exceed 13.4, 7.8 and 

6.25 respectively with probability 0.1.  Therefore the observed χ2 values (9.75, 3.10, 

6.44, 1.21 and 9.70) in Table 2 are all acceptable.  In other words the hypothesis of 

NBD cannot be rejected.  In Figure 1 are given the  N (OBS)  and N (EXP) vs. x  for 

all the five sets of data.  

 

4. WHY IS THE NBD A CLOSE FIT TO CROSSWORD PUZZLE FAILURE 

DATA ? 

To understand the effectiveness of NBD for the distribution of the number of 

failures in crossword puzzles, we have to first understand the genesis of the Poisson 

Distribution based on the concept of Bernoulli trials. Consider repeated independent 

trials (or experiments) with only two possible outcomes: failure with probability u  

and success with probability  v (=1-u).  Such trials are called Bernoulli trials.  In a 

string of  n  trials the probability of  x  failures and  n-x  successes is given by the 

Binomial Distribution (BD): 
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Fig 1. Plots of N (OBS) and N(EXP) vs.x (NBD).     
 

  
     

N(OBS) are the observed values and     

      N(EXP) the corresponding values expected     

      for the Negative Binomial Distribution (NBD).     

      x is the number of failures (a) The Hindu     

      (HW, HS) (b) The Times of India (TW, TS) 

      (c) The Hindu and The Times of India (ALLCW) 
  Fig 1c    The markers are for the observed data 

      and the lines are the best fit NBD to data. 
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BD:  Prob(x,n) =  ( n x) ux vn-x            (x = 0,1,2…)                             (4) 

The name Binomial Distribution (BD) arises from the fact that the above is the  xth 

term in the binomial expansion  (u+v)n.  We note incidentally that when summed over 

all  x   we get  (u+v)n
  = 1, since   v = 1-u. 

 When the number of trials  n  is large and  u  is low so that  nu=λ  is a small 

number, then the BD becomes the PD (Cramer 1955) as in equation (1) 

                     PD:   Prob (x) = e-λ  λx / x!            (λ > 0, x = 0,1,2….)          

It is a remarkable fact that PD has universal application:  e.g. radioactive 

disintegration, bomb hits of London during the war, wrong connections in telephone 

exchange, bacteria cluster counts in blood samples etc, (Feller 1972).  Note that PD is 

a discrete distribution, only for integral values of  x.  The key requirements for PD are 

low constant probability of failure (u), large sample size (n) and the independent 

nature of the trials.  

 It is clear that PD is inadequate for our data (Section 3 para 3) because the 

number of crosswords in a puzzle is small and more importantly the probability of 

failure u is not the same for all puzzles because of their in-built diversity, e.g. 

different composers, styles of cluing, deliberate introduction of variation in the 

complexity of a puzzle. Such variability is reflected in the real world of crossword 

puzzles and the observed data will include a mixture of numerous PD’s with different 

characteristic parameters (say λ1,λ2,λ3,λ4……).  One can model this fact by postulating 

that  λ  is distributed with a probability density function  g(λ)  with  λ > 0.  Note λ  is a 

real number, not just an integer.  Then the probability of failures for a given x will be 

the sum of probabilities contributed by PD’s with different  λ’s weighted by their 

density  g(λ).  So we have Prob(x), which is a ‘mixture distribution’ (MD): 

                                    MD:   Prob(x) = ∫o∞ Poisson (x | λ) g(λ) dλ                             (5) 

If g(λ) is a gamma distribution  Γ(λ), then it can be shown that the ‘mixture 

distribution’ is NBD  (Feller 1972). 

             Gamma Distribution:   Prob(λ) = λ (α – 1) e –λ/β
 / [Γ (α) βα]     α > 0, β > 0    (6) 
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It has two parameters:  α  the shape parameter and  β the scale parameter.  The choice 

of a Γ-distribution for g(λ) is very appropriate because it is very similar to the PD;  in 

fact one may regard the Γ-distribution as - in some sense -  a generalization of PD for 

a continuous variable (λ).  Compare equations (1) and (6); by setting β=1 and noting 

that  Γ- function is the factorial function.  Equation (5) becomes  

                          MD:   Prob(x) = {Γ(α+x) / [Γ(α) x!]} (1+β)-α {1-(1/(β+1)}x           (7) 

By averaging over λ,  λ  drops out of equation (7) and the NBD depends only on  α,β 

of the Γ-distribution.  

 Comparing equations (7) and (2) we note that  α,β  are related to  p,k as 

follows. 

α = k                and                   β = (1-p)/p 

Values of  α,β,p,k  for all the five sets of crosswords failure data (HW, TW, HS, TS, 

ALLCW) are given in Table 3.  The corresponding Γ-distributions (equation 6) are 

plotted in Figures 2a,b,c.  We note the following:  in all the five sets  p values are 

almost the same (≈ 0.46) for all except TW (0.63).  Similarly β values are close to 

1.20 in all except for TW (0.589).  α (= k) values range from 0.84 to 1.6.  ALLCW 

and TS have nearly identical parameters and so have the same p(x)  for  x = 0,1,2….. 

Table 3. Negative Binomial Distribution Parameters 

Parameter HW TW HS TS ALLCW 
p 0.464 0.629 0.466 0.455 0.455 
k 1.199 0.983 1.583 0.844 0.869 

alpha 1.199 0.983 1.583 0.844 0.869 
beta 1.157 0.589 1.145 1.2 1.172 

 
 We can therefore answer the question posed at the beginning of the section.  

While the basic statistical description of  p(x)  is Poissonian in character, because of 

variation in its characteristic parameter λ  across the diverse puzzles that constitute the 

total sample (NT = 3404) a generalization of PD invoking a distribution in  λ (Γ-

distribution) is natural.  This leads to a mixture distribution, which is the NBD.  

Whereas PD depends only on one parameter (λ), NBD depends on two (p,k).  The 



 11 

additional parameter essentially helps in obtaining the needed over dispersion 

(variance > mean), already mentioned  
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 (Section 3) whereas in PD, variance = mean.  When interpreted as a ‘mixture 

distribution’ the NBD is equivalently characterized by  α,β (instead of  p,k), which 

determine the Γ-distribution. 

 Now we ask: “Is it reasonable to expect NBD to apply for every solver?”  

According to the model described, the complexity of crossword puzzles and  their 

variability will depend both on the solver and the composer(s).  There is no reason to 

suppose the NBD will not apply universally to all crossword puzzles and solvers.   So, 

for each solver of crossword puzzles, one can expect NBD to apply, each with a 

characteristic pair of parameters (p,k) that quantifies the gap between the skills of the 

composer and solver.  For the author (p,k) = (0.455, 0.869)  (Table 3 ALLCW). 

 Some readers will be curious about the term “negative” in NBD.  It turns out 

that equation 2 (NBD) can be rewritten as pk times (-k
x) (-q)x

.   The latter part is the xth 

term in the binomial expansion of (1-q)-k, which has a negative power index. 
 

5. NBD MODELS IN SCIENCE 

NBD has diverse applications in behavioral science, e.g. in insurance industry 

and marketing of branded products.  Car accidents are modeled by NBD, which is 

used in determining the insurance premium rates known as “tarification” in insurance 

industry (Dionne and Vanasse 1988).  In general the number of accidents – low 

probability events – among a group of people is not a PD but an NBD (Greenwood 

and Yule 1920).  In marketing, in a given period the purchases of a branded product 

by a random group of consumers follows NBD, which is used to predict purchase 

patterns (Ehrenberg 1990). For a comprehensive treatment of NBD and its 

applications see the recent “Book of Negative Binomial Regression” by Joseph M. 

Hilbe (2007).  For a lucid exposition of NBD modeling see Johnson and Vieux 

(2006).  As an example from physical sciences:  in High Energy Particle Physics: 

when two energetic elementary particles (like protons from an accelerator) collide, the 
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multiplicity distribution of the newly produced  secondary particles in the collision 

conforms to NBD (Reference). 

There are numerous ways of modeling statistical data or even a particular 

distribution like NBD.  It is claimed “there are at least a dozen distinct probabilistic 

processes that give rise to NBD” (Boswell and Patil 1970).  The “mixture 

distribution” (Poisson-cum-Gamma distribution) model is only one of them.  

Likewise it is possible  some probability distribution, other than NBD can also fit the 

failure data in crossword puzzles.  Note the cautious claim made in section 3 that the 

“hypothesis of NBD cannot be rejected” implying that there may exist other 

hypotheses which meet the test criteria. 

In the next section we pursue this idea further.  It is to be emphasized that large 

sample sizes help in reducing uncertainties in modeling statistical data.  The present 

sample size (3404) is modest, but it is 10 years worth of patient work in documenting 

the failure data in crossword puzzles.  I believe this data is perhaps unique in puzzle 

solving behavior although it pertains to an individual (in this case the author). 

In early stages of my investigation (about 20 years ago) of crossword puzzle 

failure data in a year (small sample size of about 300),  it appeared that a lognormal 

distribution would fit the data (Aitchison and Brown 1957).  As the sample size 

increased over the years, it was clear that a simple lognormal distribution (2-

parameter) is not a good fit to the observations.  Then it was discovered that NBD 

would work!  However I never gave up trying lognormal type of distributions since 

they have some attractive features in modeling.  Actually it turns out that a 3-

parameter lognormal distribution will satisfy the observed data with χ2 values 

comparable to those obtained with NBD.  

     

6. THE LOGNORMAL DISTRIBUTION 

The normal density function (ND) is given by 

              ND:  Prob(x) = (1/σ√2π )  exp [-(x-m)2/2σ2]        -∞ < x < ∞      (8) 
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where  m   is the mean and σ  is the standard deviation.  The function is symmetric 

about  x = m and is “bell-shaped”.  An important variant of the ND is the lognormal 

distribution (LND);  in LND,  ln x  is normally distributed: 

                    LND1:    Prob(x) = (1/σ√2π )(1/x)  exp [-( ln x-m)2/2σ2]        x >0         (9) 

Here  ln x  is the natural logarithm of  x.  Unlike ND, LND is skewed with a long tail - 

just like the NBD – with two parameters (m,σ).  Yet another version of LND is the 3-

parameter function in which  ln (x+Xo) is normally distributed. 

      LND2:    Prob(x) = (1/σ√2π )[1/(x+Xo)]  exp  {-[ ln( x+Xo) - m]2/2σ2}   x > Xo 

(10) 

Xo  can be positive or negative (Cramer 1955).  When Xo = 0, LND2 reduces to 

LND1. 

 To fit ND to an observed probability distribution  p(x)  we proceed as follows.  

Rewriting equation (8) 

           ND:  Prob(x) = (1/σ√2π )  exp (-z2/2)    where   z = (x-m)/σ       -∞ < z < ∞ (11) 

Here z is the standardized normal variable.  The cumulative probability p (x≤X) is  

                                          G(X) = (1/σ√2π )∫X-∞  exp (-z2/2) dz                               (11a) 

For a given G(X) there is a corresponding unique value  Z(X) which can be obtained 

from standard tables of ND (Cramer 1955).  From the observed probability 

distribution  p(x) we obtain the cumulative probability 

p(x≤X) = p(0) + p(1) + p(2) +……………p(X) 

By setting the above equal to G(X) in equation (11a) we obtain the corresponding  

Z(X). 

From equation (11) 

                                         Z = (X – m)/σ        or        X = σ Z + m                             (12) 

A plot of X vs. Z is linear with the intercept on X-axis equal to m and slope σ.  

Observationally a number of pairs (Z,X) can be plotted and the constants  m,σ 

obtained by linear regression analysis. 

 For LND1 equation (12) becomes 

                                                           ln X = σ Z + m                                              (12a) 
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and for LND2 

                                                       ln (X+Xo) = σ Z + m                                         (12b) 

I tried to fit the observed probability of failures p(x) (Table 1) to LND1 (equation 12a) 

and found that  ln x  vs.  Z  is not linear;  the curve is convex instead of a straight line.  

Instead, LND2 with an additional parameter Xo provides a very good linear fit of  

ln(X+Xo)  vs.  Z.   First, Xo has to be obtained from the data before using linear 

regression of equation (12b).  For this, 3 points (X1,Z1) (X2,Z2) (X3,Z3) were chosen for 

equation (12b)  (Cramer 1955);  X1 = 0, X2 = 3, X3 = 8 and the corresponding  Z1,Z2,Z3 

respectively.  Then one can solve for unknowns  Xo,m,σ.  But here the 3 points were 

used only to fix Xo and using this known Xo,  linear regression can be used (with about 

10 points to determine σ and m.  This was done only for two sets of data HW and 
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Fig. 3.  Plot of ln (X+Xo) vs. Z.  (a) HW (b) ALLCW. 
The straight line is the best fit to data (linear regression)  
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ALLCW for which significant tails of the distribution of failures were available.  

 In Figure 3a,b the plots of equation (12b) are shown for HW and ALLCW.  In 

Figure 4a,b the observed  p(x)  and the corresponding lognormal values are compared.  

As for the χ2 values, the ndf is 7 (=11-4) and χ2 values > 12.0 are expected with 

probability 0.1.  The observed values are 6.1 for HW and 9.3 for ALLCW.  Again, we 

conclude that the fits of LND2 (3-parameter) are acceptable.  In Table 4 are given the 

parameters of LND2 (Xo,m,σ) and also the parameters of NBD (p,k) for comparison.  
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Fig 4.  Plots of N (OBS) and N(EXP) vs. x. (Lognormal ) .N (OBS) are the observed values and  
N(EXP) the corresponding values expected for the lognormal distribution LND2.  
x is the number of failures (a) The Hindu (HW) (b) The Hindu and The Times of India (ALLCW)  
The markers are for observed data and the lines are the best fit to LND2 data.  
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         Table 4.  Comparison of NBD and LND2 parameters 

   NBD   LND2   
  p k Xo m sigma 

HW 0.464 1.199 3 1.214 0.467 
ALLCW 0.455 0.869 2.432 0.895 0.536 

 

7. A MODEL FOR LOGNORMAL DISTRIBUTION. 

 Lognormal distribution appears frequently in natural and behavioral sciences: 

e.g. in biology , the sizes of organs and in economics, values of income (Aitchison 

and Brown 1957,  Crow 1988, Cramer 1955). In statistical linguistics, texts are 

structured in different hierarchical levels: letters of the alphabet, syllables, words, 

phrases, sentences, paragraphs etc.  At all levels the lognormal distribution is 

pervasive (Dolby 1971): e.g. word-length (the number of letters in a word), sentence-

length (the number of words in a sentence) conform to a lognormal distribution 

(LND1). (Naranan and Balasubrahmanyan  1992b, 2005b).  For other interesting 

applications of LND see Naranan (1992).  A popular model for such statistics is the 

‘theory of proportional effect’.  Briefly the theory is the following.  For example, 

suppose the size of an organ (x) is a cumulative sum of many (n) independent small  

incremental steps.   Further let the fractional increase  dx/x at each step be a random 

number ε  so that 

                                              dxi / xi = εi     (i = 1,2,3………n)                                  (13) 

This is characteristic of exponential growth.  Summing over all steps 

∫xn
x1 dxi / xi  = ε1 + ε2 + ε3…………..εn 

or                                      ln xn = ln x1 + ε1 + ε2 + ε3…………..εn 

If x1 is also  a random variable, then ln xn is a sum of independent random variables.  

It follows from the Central Limit Theorem that  ln xn  is normally distributed or  xn  is 

lognormally distributed (Cramer 1955).  Such a growth is called a random or 

stochastic multiplicative process.  Note the key ingredient in the model is the ‘current 

value’ is dependent on all the ‘past values’, or the previous history of the growth 
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process.  In contrast a random additive process (i.e. dxi = εi instead of   dxi / xi = εi 

from equation 13) leads to the normal distribution for  xn. 

 The above model can be suitably modified for the 3-parameter LND2 

(equation 10) by postulating 

                                   dxi /( xi+Xo) = εi     (i = 1,2,3………n)                       (13a) 

to replace equation (13), leading to a lognormal distribution for  ( xi+Xo), where X0 is 

a constant.  This implies  dxi is proportional to ( xi+Xo) and not  xi ;  in other words, 

both additive and proportionate effects are in operation.  

 Does the theory of proportionate effect have any relevance for the distribution 

of the number of failures in crosswords, p(x)?  There is a feature in the accumulation 

of  ‘failures’ in a puzzle, which has some resemblance to the proportional effect. The 

first failure occurs at random in the grid (x = 1).  But when x = 2, the second failure is 

more likely to occur in a crossword that intersects the first failure, because it gets no 

help from the first failure (which is an unknown word).  Similarly when x = 3 the third 

failure is more likely to be one of the words intersecting either or both the first and 

second failures.  It is clear that there is a semblance of proportional effect here 

although it is difficult to quantify.  The proportional effect is only partial since a new 

failure can also occur in a random crossword on the grid.  This additive effect may 

also contribute to the ‘evolution’ of the number of failures. Observationally too, I 

have noticed that failures have a tendency to occur in one or more clusters in the grid. 

The LND2 with an extra parameter Xo may be a good way to model this fact.  

Admittedly the model is semi-quantitative at best.  It is worth citing here an analysis 

of the popular board game “Snakes and Ladders”.  It is claimed that the number of 

moves to reach the end of the game – after ascending the ladders and descending the 

snakes – is a lognormal distribution. In this game, it is obvious that the ‘current 

position’ of a player on the board depends on all the previous moves, although each 

move is decided randomly by throwing a dice. 
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8. COMPARISON OF NEGATIVE BINOMIAL AND LOGNORMAL 

DISTRIBUTION MODELS. 

 It is not often that we find observations that are equally well described by two 

different well-known and popular statistical distributions.  Here we have the 

distribution p(x) of x the number of unsolved clues in a crossword puzzle, satisfying 

the ‘goodness of fit of hypothesis’ test – the χ2 test – of two different hypothetical 

statistical distributions equally well.  They are the 2-parameter NBD and the 3-

parameter LND2.   Can we choose one as better than the other?  Obviously,  the 2-

parameter NBD has one free parameter less than the 3-parameter LND2 for adjusting 

the data to theory, and is the preferred one.  It is possible that an increase in sample 

size  NT will help resolve the dichotomy.  (I have already mentioned that small 

samples of data seem to fit a 2-parameter LND1).  But this requires more data from 

more solvers.  

 It appears that LND2 may mimic NBD in a narrow range of values of the 

parameters p and k characterizing the NBD.  Here we have p ≈ 0.46 and k = 0.9 – 1.2 

(Table 4) characteristic of the solver (author).  For other values of (p,k) – other solvers 

and/or puzzles – the correspondence of NBD and LND2 may not hold.  In other 

words, NBD may be the only one that is relevant for all puzzles and solvers.  

 Viewing the same set of observations from two different angles will add to our 

understanding of the underlying mechanisms governing them.  Both NBD and LND 

have wide ranging applications and are well supported by robust theory.  Robustness 

is also evident in the data since the totality of data (ALLCW) as well as its 4 

constituents (HW,HS,TW,TS) all conform to NBD (Tables 2,3).  Similarly ALLCW 

and its constituent HW both conform to LND2 (Table 4).  This suggests that 

superposition of multiple sets of data still conforms to the same distribution (NBD 

and LND2) that applies to the individual sets. 

 As regards the modeling of data:  NBD offers a straightforward and plausible 

interpretation as a mixture of Poisson and Gamma Distributions.  For LND2 there is 
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some indication of  the applicability of the theory of proportional effect.  In summary 

the NBD has a clear advantage over the LND2. 

 

9. CONCLUSIONS AND SUMMARY. 

 I believe the observation on the distribution of the number of unsolved clues in 

cryptic crossword puzzles presented here is perhaps unique in behavioral science, e.g. 

the puzzle-solving behavior of linguistic puzzles.  The sample size of total data (3404) 

- gathered over a decade by the author - is substantial enough to examine the tails of 

the distribution.  Considering that crossword puzzle solving is a major recreational 

and intellectual activity in the masses, the study is likely to be important for 

understanding the nature of puzzle solving.  It is pertinent to note that crossword 

puzzle solving is a recommended pursuit for helping ward off dementia in old age.  

The investigation is also of linguistic significance since the clues reflect creative and 

innovative aspects of word usage in syntactic and semantic sense.  For a novice, the 

cryptic crossword clues make little sense and even appear ‘insane’ and ‘crazy’.  The 

composer revels in various tricks of word play: anagrams, puns, reversals, words 

nested in words etc. (See for example Sandy Balfour, 2008).  In this the British 

cryptics differ from their American counterpart. The grids are dense in the American 

puzzles  and skeletal in the cryptics.  There are 70-80 crosswords in a 15 x 15 

American puzzle compared to 28 – 34 in cryptic puzzles.   The denser packing of 

words in the American version is made possible by resorting to words (as solutions) 

that are very rare and unfamiliar – most of them not in dictionaries – acronyms etc.  

But to compensate for the challenge, the clueing is straightforward unlike the 

convoluted and sometimes “Rube-Goldberg” style of clueing  in cryptics (Matt 

Gaffney 2006). 

 Language as a tool for communication – its most compelling rationale – is 

simple, direct and lucid in normal usage;  as a puzzle it is meant to intrigue and 

entertain.  For the solver it is not only an intellectual challenge, but also enjoyable.  At 

the other extreme is secret coded communication or cryptography.  Simon Singh 
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(2000) alludes to a connection between skills in crossword puzzle solving and code-

breaking (cryptanalysis).  In 1942 during the World War II, the British Government 

recruited staff for the project to crack the German secret code, the Enigma.  One of 

the main criteria for eligibility was the ability to completely solve a crossword puzzle 

in 12 minutes or less. The British crossword puzzles perhaps derive their popular label 

‘cryptic’ from cryptography. 

 Just as in linguistics there are surprising regularities such as Zipf’s Law of 

word frequencies (Zipf 1949, Baayen 2001), in the solving of crossword puzzles too 

there are statistical regularities as demonstrated in this article.  Both linguistic 

discourses and the sets of clues in crossword puzzles are free creations of the mind, 

yet they exhibit some regular and universal statistical behavior.  Randomness plays an 

important role in puzzle solving as exemplified in the NBD model, which is an 

extension of the Poisson Distribution characteristic of random counting.  This is 

interesting because the puzzles themselves are purely games of skill and not chance 

and the word solutions to clues are unique. 

 Many complex systems, well-organized hierarchical structures like a language 

text or a DNA sequence for example, exhibit coexisting order and randomness.  For a 

detailed discussion see Balasubrahmanyan and Naranan (1996, 2005a). 

 What are the desirable future investigations in crossword puzzle solving?  A 

large sample size (NT) is crucial for statistical analysis of data with long tails.  This 

can be achieved in three ways: (A) many crossword puzzles and one solver, (B) one 

crossword puzzle and many solvers and (C) many puzzles and many solvers.  The 

present attempt is an example of (A).   To achieve (B), the following is suggested. A 

composer of a published puzzle can add a footnote requesting each solver, who tried 

to complete the puzzle, to send his number of unsolved clues by SMS to him.  The 

composer can then make the data collected available to anyone interested in analyzing 

it.  Repetition of (A) and or (B) will make up category (C). There is a case for an 

organized group of solvers undertaking the exercise.  With many crossword puzzle 

aficionados in long-standing pursuit of the hobby there is great potential for immense 
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volume of statistical data.   It will be interesting to see if the American type puzzles 

too  show similar statistical properties. 

 In summary, solutions to cryptic crossword puzzle accumulated over a decade 

by the author (total sample 3404) yield a probability distribution  p(x) of the number 

of failures.  First the total sample is divided into 4 groups and each analyzed 

separately for fit to a statistical distribution. The Poisson Distribution with a single 

parameter (λ) is a poor fit to p(x).  The Negative Binomial Distribution (NBD), a 

generalization of the Poisson Distribution with two parameters (p,k) fits very well all 

the sets of data separately and in totality (Table 2,3; Figures 1,2).  The pair (p,k) is 

characteristic of the solver;  in this case the author has (p,k) = (0.455, 0.869).  When a 

group of puzzles of varying complexity is involved their combined effect on p(x) can 

be regarded as yielding a mixture distribution of x, in which a fixed λ is replaced by a 

varying λ distributed according to the Gamma distribution.                                                             

 The p(x) is also equally well fit by a 3-parameter lognormal distribution.  For 

total data (ALLCW) the three parameters (Xo,m,σ) are (2.42,0.895,0.536).  It is 

suggested that the dichotomy – two different statistical distributions fitting the same 

data – may be true only for a narrow range of (p,k) values.  For another solver with 

different (p,k) only the NBD may be a valid choice.   Further, NBD is the preferred 

distribution because it has only 2 free parameters instead of 3.  The mixture 

distribution model of NBD is a plausible one reflecting reality, whereas the model for 

LND based on the theory of proportional effect is somewhat qualitative. 

 This investigation is new in behavioral science (linguistics, word puzzle 

solving) and warrants more data gathering from a group of puzzle solvers.  I conclude 

with a conjecture that is prompted by the model proposed for the observations 

(section 3).  Negative Binomial Distribution will prove to be appropriate for all 

crossword puzzles and all solvers and therefore universal.  
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