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KOLAM  DESIGNS  BASED  ON 

     FIBONACCI  NUMBERS 

Part II:  Square and Rectangular designs of arbitrary size based 

on Generalized Fibonacci Numbers 

 

S. Naranan 

 

In Part I of this article we presented a scheme for creating a class of kolams 

based on Fibonacci numbers.  Several square and rectangular kolams were 

displayed.  In this Part II, the scheme is generalized to arbitrary sizes using 

Generalized Fibonacci numbers.  The problem of enumeration – the number of 

possible Fibonacci kolams of a given size – is discussed.  For 2 x 3 kolams 

symmetry operators forming a group are used to classify them.  Finally the  

scheme is further extended beyond square grids  to cover diamond-shaped grids.  

Possible connections of kolams to Knot theory and Group theory are indicated.  

 

1. Introduction. 

 Kolams are decorative patterns drawn as curved lines around dots in a 

rectangular grid.  In Part I [1] we described a class of Kolam designs based on 

Fibonacci numbers (Fn) in the Fibonacci series 

         0   1  1  2  3  5  8  13  21  34  55  89  144  ...........                  (*) 

They are generated by the simple recursive equation 

                               )1(,1,0 2110 >+=== −− nFFFFF nnn                                    (1) 

We constructed Fibonacci Square (FS) kolams of size Fn
2
 and Fibonacci 

Rectangular (FR) kolams of sides equal to successive Fibonacci numbers Fn-1 and 

Fn-2. We adopted a few ground rules: square lattices, symmetry (four-fold 

rotational), single (endless) loops and no unit cells without dots at the centre.  

These rules enhance the aesthetic value of the designs and help pose mathematical 

problems for exploration.  We presented FS kolams of size  3
2
 , 5

2
 , 8

2
 , 13

2
 , 21

2
 

and FR kolams of size  2 x 3, 3 x 5, 5 x 8 and 8 x 13 in [1]. 
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 The construction is modular:  building bigger Fibonacci kolams (FKs) from 

smaller sub-units.  The procedure exploits an important property of Fibonacci 

numbers. Let Q = (a  b  c  d) be a quartet of consecutive Fibonacci numbers.  Then 

                                                       babcb += 2                                                   (2a) 

                                                     cbad 422 +=                                                   (2b) 

Both are easily proved using  d = c + b,  c = b + a.  The geometrical versions of 

equations (2a) and (2b) are given in Figure 1, which bears duplication from Part I 

(Figure 2) since this is the basis for building FKs. For example for Q = (3 5 8 13) 

an FS kolam 13
2
 (d

2
) is made up of a smaller FS kolam 3

2
 (a

2
) at the centre and 

four FR kolams of 5 x 8 (b x c) arranged cyclically around the square (Figure 7c in 

Part I).  The merit of this construction lies in the fact that the cyclic arrangement 

automatically ensures four-fold rotational symmetry of the square kolam if the 

central square kolam is symmetric.  

 At the end of Part I, it was mentioned that equations (2a) and (2b) apply 

also for Generalized Fibonacci numbers defined by 

                                            )1(,, 2110 >+=== −− nGGGGG nnnβα                             (3) 

The Fibonacci series (*) is a special case of equation (3) with (α, β) = (0, 1).  For 

example for (α, β) = (2, 1), we have the Lucas series 

2 1  3  4  7  11  18  29  47  76 ........... 

Any quartet Q = (a b c d) of Lucas numbers also satisfies equations (2a) and (2b). 

 First we will generate “Lucas Square Kolams” of size 4
2
 based on Q = (2 1 

3 4).  As a variant for 4
2
 we consider Q = (0  2  2  4) corresponding to (α, β) = (0, 

2), and find new patterns (section 2). This is the first step towards producing GFKs 

of any arbitrary size d
2 
by suitably choosing the quartet Q.  Thus the class of GFKs 

covers square kolams of all sizes (section 3). 

 So far we have confined to square cells in square and rectangular grids.  Is 

it possible to extend GFKs to other grids, such as the diamond-shaped grids of the 

type in Figures 1(g), 1(h), 1(i) in Part I?  It can be done and we will indicate how 

to transform a square grid FK to a diamond grid kolam. 
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 We have a very broad canvas to create new kolam designs and to realise the 

full potential we need the aid of computer with suitable software of algorithms and 

graphic aids.  

 

2. Lucas Kolam designs  of  4
2
 and 7

2
. 

 The Lucas quartet Q = (2  1  3  4):  4
2
 = 2

2
 + 4(1 x 3) is the basis for a 4

2
 

square Lucas kolam.  In Figures 2(a) and 2(b) there are four 1 x 3 ‘rectangles’ 

cyclically placed around a square 2
2
 cloverleaf (Part I, Figure 5c).  The splicing 

points between the ‘rectangles’ (actually linear strings) and the central square are 

shown as dark dots.  The two figures have different splicing points.  Note that the 

splices come in sets of four, for preserving symmetry (short for four-fold 

rotational symmetry).  These two are the only possible single loop 4
2
 Lucas 

kolams.  The other designs in Figure 2 are explained in section 3. 

 We can build a 7
2
 Lucas kolam  from Q = (1  3  4  7): 7

2
 = 1

2
 + 4(3 x 4).  

The 3 x 4 rectangle can be composed from a 3
2
 square and a 1 x 3 linear string.  

(Figure 3a). Four such rectangles can be merged with the centre dot (1
2
) in a four-

way splice (Figure 3b).  Note that there is a wide choice for the 3
2
  (section 5) 

since it need not be symmetric;  but we have chosen the unique 3
2
 square. 

 

3. Generalized Fibonacci Kolams: 4
2
, 6

2
, 9

2
 and 10

2
. 

 So far we have designed square kolams  n
2
:  n = 2, 3, 5, 8 (Fibonacci) and n 

= 4, 7 (Lucas).  To fill the gap, n = 6, 9 , 10 we need to consider Generalized 

Fibonacci numbers and we incidentally generate a GF kolam of size 4
2
 in addition. 

The quartets corresponding to the kolams are as follows: 

 

  Kolam  Q = (a  b  c  d) Composition  (α, β) 

     4
2
     (0  2  2  4)  4

2
 = 0

2
 + 4 (2 x2) (0, 2)   

    6
2
     (0  3  3  6)  6

2
 = 0

2
 + 4 (3 x 3) (0, 3) 

    9
2
      (1  4  5  9)  9

2
 = 1

2
 + 4 (4 x 5) (1, 4) 

  10
2
     (0  5  5  10)          10

2
 = 0

2
 + 4 (5 x 5) (0,  5)  
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  4
2
 kolam:   The rectangles  (b x c) degenerate into 2 x 2 squares.  These 

squares need not be symmetric since the symmetry requirement is only for the big 

square (d
2
).  In Figure 2(c), (d), (e), (f) are shown the 2 x 2 modules and the 

kolams they generate.  The squares are merged at the (imaginary) centre (0
2
 !) in a 

four-way splice.  Additional splices are shown as four dark dots.  Note the 2 x 2 

squares in Figure 2(c) and 2(f) are mirror images (reflected in a vertical axis), yet 

they yield very different patterns.  Also Figures 2(d), 2(e) have as their generators 

2 x 2 squares which are cyclic (one rotated 90
o
). 

 Figure 2(c) is a beautiful popular kolam known as Brahmamudi (Brahma’s 

knot) and is used as a basic module to draw a large variety of designs in different 

grid shapes.  Figure 2(d) is a variant of Brahmamudi with skewed circular loops 

touching at the centre – an interesting twist inspired by the modular approach. 

 6
2
 Kolam:   The degenerate ‘rectangles’ or asymmetric squares 3 x 3 have 

great variety (section 5) and we have chosen just two as generators for the 6
2
 

kolams in Figures 4(a), 4(b).  As in the case of 4
2
 kolams, here too there is a four-

way splice at the centre and an additional set of four splices marked by dark dots. 

 9
2
 Kolam:  This is made up of four  4 x 5 rectangles around a dot (1

2
).  The 

rectangle is composed of a  4
2
  Brahmamudi and linear string of length 4 (1 x 4) 

spliced to it on the right at two points (Figure 3c).  Four such rectangles are 

merged with the central dot in a four-way splice and there are in addition two sets 

of splices (Figure 3d).  The result is an intricate complex pattern based on the 

Brahmamudi.  

 10
2
 Kolam:  Here again the generators are squares as in 4

2
 and 6

2
 kolams.  

We will choose a 5 x 5 asymmetric kolam as the generator.  First we describe a 

general procedure for producing asymmetric square GFK.  (The symmetric 

versions are created as in Figure 1b). In the quartet Q = (a  b  c  d) 

           d
2
 = d (b + c) = d c + d b = d c + (c +b) b = d c + c b + b

2
  

d
2
 is composed of rectangles  d x c, c x b and a square b

2
 (Figure 4 c).  The three 

modules can be suitably joined together to yield a  d
2
 asymmetric kolam.  Note 

that the square kolam need not be single-loop, as the requirement of single loop is 
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only for the larger 10
2
 kolam.  To emphasize this point, we have chosen an  

asymmetric 5
2
 with three splices and two loops (Figure 4d).  Four such squares are  

joined at the centre in a four-way splice (as in 4
2
 and 6

2
 kolams) with two added 

sets of splices (8 in all).  The result is a single loop 10
2
 kolam (Figure 4e).  

 

4. Generalized Fibonacci Kolams of Arbitrary Sizes. 

 After dealing with particular cases of FS kolams of size n
2
 (n ≤ 10), we now 

generalize to arbitrary n.  In the GF quartet Q = (a b c d), we set d = n and find 

suitable values for c;  then b and a are automatically determined as b = d – c  and 

a = c – b.  A Generalized Fibonacci series {Gn} is completely determined by the 

two starting numbers (G0, G1) = (α, β).  The ratio of consecutive GF numbers 

attains a limiting value  φ = 1.618034...the Golden ratio which is independent of α 

and β.  α, β are usually chosen as co-prime [gcd (α,β) = 1].  If α, β are not co-prime 

with gcd (greatest common divisor) g (≠1), then every Gn is a multiple of g  

(equation 3). It can be shown that if g is the gcd of any two adjacent numbers in 

the series, then g divides a.  The proof is as follows:  If g is the gcd of any pair m, 

n then g divides m – n.  Here g = g(n, c) divides n – c = b.  Since g divides both c 

and b, g divides c – b = a, the smallest number in Q.  However, we can cascade 

down the series to terms < a and finally conclude that g divides β  and α.  If α or β 

happens to be 1, then  g = 1.  For Fibonacci and Lucas numbers  β = 1, so g = 1.  

 We have to consider two cases:  n  odd or n even. 

 Case I.  n = 2m + 1 (= d). 

 We choose  the quartet Q = (a  b  c  d) 

Q = (1+2k,    m – k,    m+ k+ 1,    2m+1)          k = 0, 1, 2, 3..... 

For instance, for n = 11,  k determines the quartets 

k = 0      Q = (1   5   6   11) 

k = 1      Q = (3   4   7   11) 

k = 2      Q = (5   3   8   11) 

as three possible choices.  In all of them adjacent numbers are co-prime.  But this 

may not be always true.  For n = 15 
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k = 0      Q = (1   7   8   15) 

k = 1      Q = (3   6   9   15) 

k = 2      Q = (5   5   10  15) 

k = 3      Q = (7   4   11  15) 

For k = 1, all numbers in the quartet are divisible by 3 and for k = 2 all are 

divisible by 5.  These quartets, however, can also be used for building kolams  n
2
. 

Case II:  n = 2m (= d) 

We choose Q = (a  b  c  d) as 

Q = (2k,    m – k,    m+ k,    2m)          k = 0, 1, 2, 3..... 

Here a and d are even.  But m + k  and  m – k are either both odd or both even, 

because their difference is 2k an even number.  There are two sub-cases to 

consider: (a) m is even (= 2t)  (b) m is odd (= 2t+1). 

 Case IIa:  n = 2m = 4t (= d) 

 We choose 

Q = (2k,    2t – k,    2t+ k,    4t)          k = 1, 3, 5..... 

Restricting k to odd values (1, 3, 5,...) ensures that the middle two are odd (unlike 

a and d).  e.g. for n = 12 

  k = 1      Q = (2   5   7   12) 

  k = 3      Q = (6   3   9   12) 

 For k = 3 all numbers in Q are multiples of 3. 

 Case IIb:  n = 2m = 4t + 2 (= d) 

Q = (2k,    2t+1– k,    2t+1+k,    4t+2)          k = 0, 2, 4..... 

Restricting k to even numbers and 0 yields odd numbers for the middle two.   e.g. 

for n = 10 

k = 0      Q = (0   5   5   10) 

k = 2     Q = (4   3   7   10) 

k = 4      Q = (8   1   9   10) 

In Figure 4(e)  (n = 10), the value of k is 0.  Other possible choices are k = 2, 4.  

All the three cases are summarized in Table 1. Note that the gcd of the middle pair 

of numbers (sides of rectangle) is always a factor of a including 1. 
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 In any GF series with starters (α, β) the ratio of adjacent numbers 

approaches the Golden ratio φ = 1.618034... for large n.  However, for a given Q = 

(a  b  c  d), we can achieve a ratio c/b as close to φ as possible by choosing an 

optimum value for k.  This optimum value  kopt is given by 

kopt = 0.118 n – 0.5        (n  odd) 

        kopt = 0.118 n                (n  even) 

The round off for kopt is as follows.  For n odd, it is rounded off to the nearest 

integer.  For n = 4t (a multiple of 4), the round off is to the nearest odd integer;  for 

n = 4t+2 the round off is to the nearest even integer.  Table 2 gives the optimum 

quartet Q (a  b  c  d) and the corresponding  kopt for n = 14 to 24. 

 Before concluding this section, we mention a simple scheme to generate 

symmetric square kolams n
2
.  It is based on the identity 

n
2
 = (n – 2)

2
 + 4 (n –1) 

Geometrically: square kolam n
2
 has a central smaller square kolam (n–2)

2
 

surrounded on four sides by linear strings of size (n–1) in a cyclic order.  

Repeating the process, e.g. 

(n - 2)
2
 = (n – 4)

2
 + 4 (n –3) 

etc. one ends up with a 1
2
 or 2

2
 at the centre.  This works for all n, odd or even.  

Although this appears unrelated to GF numbers, it actually corresponds to  

Q = (n – 2,    1,    n – 1,    n
2
) 

in which b is set equal to 1, to make the rectangle b x c  a linear string of length c. 

For n = 4, the Lucas quartet Q (2  1  3  4) of Figures 2a, 2b is an example.  Square 

kolams of 5
2
 and 6

2
 based on this are given in Figures 5a, 5b. 

 

 4.1 Generalized Fibonacci Rectangular Kolams of Arbitrary Size 

 Our emphasis has been mostly on GF square kolams.  We now turn to GF 

rectangular kolams of arbitrary size m x n.  Any given rectangle can be broken up 

into a set of squares and a linear string.  This is illustrated by a few examples. 

                   7 x 18 = 7(7+7+4) = 7
2
+7

2
+4(4+3) = 7

2
+7

2
+4

2
+3(3+1) = 7

2
+7

2
+4

2
+3

2
+(1.3)  

    12 x 19 = 12(12+7) = 12
2
+7(7+5) = 12

2
+7

2
+5(5+2) = 12

2
+7

2
+5

2
+2(2+2+1) 
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                   = 12
2
+7

2
+5

2
+2

2
+2

2
+(1.2) 

                    9 x 13  = 9(9+4) = 9
2
+4(4+4+1) = 9

2
+4

2
+4

2
+(1.4). 

                    5 x 8 = 5(5+3) = 5
2
+3(3+2) = 5

2
+3

2
+2(2+1) = 5

2 
+3

2 
+2

2
+(1.2). 

The constituent squares and the linear string have to be positioned in a cyclic 

pattern as illustrated  for 12 x 19 and 7 x 18 in Figure 6.  The square kolams are 

constructed as described in the previous sections. 

 

5. Enumeration of Kolams. 

 How many distinct kolams exist of a given size?  This is a problem in 

combinatorics since the kolams are built from smaller sub-units.  We start with the 

smallest square 2
2
 single-loop kolams.  The only symmetric version is the 

‘cloverleaf’ pattern (Figure 7a);  this is used in building FKs with a = 2 in  Q (a  b  

c  d).  The asymmetric versions are useful in building 2 x 3 rectangles (as 2
2
+1.2). 

Four of them are shown in Figure 7(b);  they are arranged in cyclic order 

(clockwise rotation by 90
o
 in succession). Since these are to be used in 2 x 3 

rectangles we have to consider all the four as different. 

 We now proceed to enumerate the different types of 2 x 3 kolams.  Each 2 x 

3 is made up of a 2
2
 and a linear string 1 x 2. The constituents need not be single-

loop since the single-loop requirement is only for the whole 2 x 3 kolam.  So, we 

have more choices for 2
2
 as in Figure 8(b);  the first two of the trio have two loops 

and the last one has three loops.  In addition there are cyclic rotations of the above 

three as in Figure 7(b).  For 1 x 2 we have two choices (Figure 8a) with one loop 

and two ‘loops’ and their cyclic rotations.   The 2 x 3 kolam pattern will depend 

not only on the constituents (Figures 7,8) but also on the choice of the splicing 

points to join the 2
2
 and 1 x 2 string.  Enumeration of all these possibilities can be 

handled manually.  It turns out that there are 30 different 2 x 3 FR kolams. They 

can be classified into six different basic patterns shown in Figure 9.  Others can be 

obtained as rotations and reflections of the basic types about suitably chosen axes. 

The six basic patterns are labeled E R G H U S ;  the alphabet patterns reflect the 

shapes of the kolams and have the same symmetry properties as the kolams.  These 
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‘ERGHUS’ kolams correspond to the SaRiGaMaPaDa  kolams [2, 3] discussed in 

Part I [1]. 

5.1 Symmetry Properties of Fibonacci Rectangular Kolams 2 x 3. 

 A fundamental concept in science is ‘symmetry’ which is the subject of 

Group Theory with far-reaching and wide-ranging applications in all branches of 

science and technology.  Here the operations on the basic pattern (or symmetry 

operators) are rotations about z-axis (perpendicular to the (X Y) plane of the 

paper) and reflections (mirror images) in the (X Y) plane.  Rotations are labeled 

R(0
o
), R(90

o
), R(180

o
), R(270

o
) – i.e. rotations of 0

o
,90

o
,180

o
,270

o
.  They are 

equivalent to I, R(90
o
), R(180

o
), R(-90

o
).  I is the ‘Identity’ operator which leaves 

the pattern unchanged.  Reflection operators are M(X), M(Y), M(45
o
), M(-45

o
) – 

i.e. reflections about X-axis, Y-axis, diagonal Y = X and diagonal Y = -X 

respectively.  These 8 operators 

I    R(90
o
)    R(180

o
)    R(-90

o
)    M(X)    M(Y)    M(45

o
)    M(-45

o
) 

form a ‘group’ as defined in Group Theory (see Box). 

 How do these operators alter the shapes of the ERGHUS kolams ?  Table 3 

summarises the results.  The basic kolam shapes (K) are in the top box.  

Successive rows show the effect of different operators on K.  Instead of the kolams 

of Figure 9, we adopt the alphabets which have the same symmetry properties.  

Some interesting features are as follows; 

(a) Of the total 48 (6 x 8) patterns, only 30 are distinct;  the remaining 18 

are repetitions, shown as dotted patterns. 

(b) Only for ‘R’ and ‘G’ all the 8 operators yield distinct patterns (columns 

2,3).  For ‘E’ ‘U’ ‘S’ only four are distinct.  For ‘H’ only two give distinct patterns 

[I and R(90
o
)].  These account for  2 x 8 + 3 x 4 + 1 x 2 = 30 distinct patterns. 

(c) From the Group Table (Box), two operators A, B acting in succession 

on the kolam patterns (K) is equivalent to a single operation.  e.g. R(90
o
) R(90

o
) = 

R(180
o
), M(Y) R(90

o
) = M(45

o
). 

The Group theoretic approach could possibly facilitate classification of 
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kolams of higher order.  This is a topic worthy of further exploration.  Another 

approach to enumeration is Graph Theory.  Gift and Rani Siromoney first applied 

Graph Theory to kolams [4].  In the graph,  every dot represents a node and a pair 

of dots linked in the kolam is an edge.  Using combinatorial techniques the number 

of possible graphs with a given number of nodes can be counted [5]. 

  

  5.2  Fibonacci Kolams of size 5
2
. 

 In Part I [1] we built 5
2
  FS kolams using Q = (1  2  3  5); figures 3(b), 3(d) 

are examples using ‘E’ as the basic pattern for 2 x 3 rectangles.  In Figure 3(b) the 

merging of the four rectangles with the central square (1
2
) was by a four-way 

splice, yielding a single-loop 5
2
 FS kolam.  In Figure 3(d), further splices were 

added at two sets of points  (8 in all) to obtain a more complex pattern.  Adopting 

the same strategy for the 30 distinct ERGHUS kolams we find the following. 

 (a) The four-way splice at the centre gives a desired single-loop FS  kolam 

for all the 30 patterns. 

 (b) Additional splices, besides the four-way splice, always yield multiple 

loops except for pattern ‘E’.  So, Figure 3(d) is unique. 

Thus we have 31 (30 + 1) different FS kolams 5
2
 based on Q (1  2  3  5). 

Using the Generalized Fibonacci quartet Q (3  1  4  5), a GFS kolam 5
2
 was made 

by splicing four linear strings 1 x 3 to a central symmetric 3
2
 (Figure 5a).  This 

Figure is for a particular choice of splicing point;  it is clear there are two other 

choices.  Thus we have 3 GF 5
2
 kolams.  For both the quartets put together we 

have a total of 34 different square kolams of size 5
2
. 

 

5.3. Fibonacci Square and Rectangular Kolams of Higher Order.  

The number of possible FKs of size 3 x 5, 8
2
 etc rises very rapidly and their 

enumeration by brute force methods is impractical.  We illustrate the complexity 

of counting for 3 x 5 rectangles. Note that the enumeration problem considered 

here is restricted to the composition 3 x 5 = 3
2
+(2x3).  To simplify our attempts 
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B   O   X 

Basics of Group Theory and Application to Kolam Designs. 

 A Group G is a set of distinct elements G = E1  E2  E3  E4....) with a ‘binary’ 

operation (or ‘product’) which obeys four rules: 

 (1) Product of any two elements is also an element of the Group.  

 If  AB = C. then C also belongs to G.  

 AA = A
2
 also belongs to G.  This is the ‘closure’ property. 

 (2) I, the identity element is a member of G such that  

I A = A I = I 

 (3) Associative Law:   A (BC) = (AB) C 

 (4) Every element A has an inverse element X in G such that 

AX = I  or  X = A
-1
 

G is an Abelian Group if operators commute:  AB = BA. 

 In the context of symmetry properties of Rectangular Kolams we define the 

Group G of order 8 (8 elements) 

G = {I    R(90
o
)    R(180

o
)    R(-90

o
)    M(X)    M(Y)    M(45

o
)    M(-45

o
)} 

They are the rotation and reflection operators (section 5).  The Group Table 

represents, as an 8 x 8 matrix, all possible products AB where A and B are any 

two elements of G (Table 4).  Here the ‘product’ AB has to be interpreted as ‘first 

B, then A’ operating on the object.   All the four group properties are easily 

verified in the Table.  G is an Abelian Group since AB = BA and the Table is 

symmetric about the main diagonal.  Every column or row is a different 

permutation of the 8 elements of the Group (closure).  For every element A there 

exists another X such that AX = I and no two elements have the same inverse.  

Since the order of operations is immaterial the Associative Law is satisfied.  

Further note the subset of the first four elements of G 

GR = {I    R(90
o
)    R(180

o
)    R(-90

o
)} 

also forms  a Group obeying all the four properties.  
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first we consider only single-loop 3
2
 and 2 x 3 constituents. For the 2 x 3 

rectangles we have 30 choices (single-loop).  For 3
2
 we consider asymmetric 

single-loop kolams also.  These have to be in turn obtained by regarding 3
2
 as 2x 3 

+ 1 x 3. 

In [2] 63 kolams of 3
2
 are displayed.  Of these one is a  repetition (# 35 and 

#39 are the same) and 25 have empty unit cells rejected in our analysis.  Of the 

remaining 37, only one is a symmetric single-loop kolam (Figure 5d, Part I).  The 

remaining 36 asymmetric kolams have either one loop (28), two loops (7) or three 

loops (1).  This list may not cover all the possibilities.  

In enumerating 3 x 5 rectangles, we have to consider the  number of choices 

for (a) 2 x 3 rectangles (b) 3
2
 and (c) splicing points.  For (a) we have 30 choices;  

for (b) up to 28 x 8 (counting reflections and rotations) + 1 (symmetric case), i.e. 

up to 225 choices.  For (c) there are up to 3 choices.  Over all there can be up to  

30 x 225 x 3 = 20,250 patterns.  This is perhaps a gross over-estimate since they 

include patterns with repetitions,  multiple loops and/or empty unit cells.  The 

number is also an under-estimate since  only single-loop constituents are 

considered;  multiple loop constituents will yield more possibilities.  Finally all 

this is based only on the composition  3 x 5 = 3
2
+ 2 x 3. 

Clearly, the enumeration becomes even harder as we go to higher orders.  

For example to enumerate the number of 8
2
 we need to know the number of 

possible 3 x 5 rectangles which is still uncertain. 

  

 6.  Fibonacci Kolams on Diamond Grids. 

Till now we have adopted a square lattice or grid of dots for Kolam designs.  

In the folk art of Kolam, diamond-shaped grids are very popular.  So we would 

like to consider extending the Fibonacci Kolams to diamond grids.  

A diamond  grid D(w) is specified by its diameter or width with w  dots.  

For odd w, the numbers of dots in successive rows from top are 1,3,5,7.......w-2, w, 

w-2..........7,5,3,1.  In Figure 10 a diamond grid is shown for w = 13, i.e. D(13).  If 

w is even, the pattern of dots in successive rows is 2,4,6.......w-2, w, w, w-2 
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......6,4,2.  For convenience we consider only odd w. D(w) has a central square grid 

of size  (w+1)/2 surrounded by four identical right-angled triangles on the four 

sides as shown in Figure 10.  We set  (w+1)/2 = d. Each triangle has a base (the 

hypotenuse) of (d-2) dots and a height of (d-1)/2 dots.  We label this triangle as 

‘Fibonacci Triangle’ FT(d).  So far we have dealt with Fibonacci Squares  FS(d), 

Fibonacci Rectangles FR(b,c) related to the quartet Q(a  b  c  d);  now we have 

added a Fibonacci Triangle FT(d) with base (d-2) and height (d-1)/2.  

Whatever be the symmetry property of FT(d)  the overall symmetry of 

D(w) is preserved because identical FTs are appended on all the sides.  It turns out 

that FT(d)  can be broken up into four parts: (a) a smaller FT(a),  (b) an FR(a,b)  

and (c) two isosceles right triangles RT(b) of height (b-1). By iterating the 

procedure one can build FT(d) from smaller constituents.  Each of them can be 

individually spliced to the central square grid of side d
2
.   The same splicing is 

repeated for all the four FTs, resulting in a single-loop symmetric diamond grid 

D(w).  This scheme is easily adapted for even w too;  in this case the FT has two 

dots in the top row (a trapezium).  Further, the procedure works for any w since it 

is based on Generalized Fibonacci Numbers.   

  

 7. Discussion and Summary. 

We have presented in this article a general procedure to create square and 

rectangular kolam designs of arbitrary size based on the Generalized Fibonacci 

numbers.  The key feature is the Fibonacci recursion relation (equation 3) that 

allows building a square (d
2
) with sub-units of a smaller square (a

2
) and four 

cyclically placed rectangles (b x c).  The construction has built-in four-fold 

rotational symmetry mandated by our ground rules.  Merging the sub-units by 

splicing requires a judicious choice of splicing points to avoid multiple loops and 

empty unit cells.  First we constructed Fibonacci squares 2
2
, 3

2
, 5

2
, 8

2
, 13

2 
,21

2
  

and Fibonacci rectangles 2 x 3, 3 x 5, 5 x 8 and  8 x 13 in Part I[1] and then 

extended the list to 4
2
, 6

2
, 7

2
, 9

2
 and 10

2
 to cover all m

2
 (m ≤ 10).   To extend 

construction to any arbitrary size square,  a suitable  choice of the quartet of 
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consecutive Fibonacci numbers Q (a  b  c  d) has to be made.   The problem of 

enumeration of the number of distinct Fibonacci kolams is tractable only for 2 x 3, 

3
2
 and 5

2
 kolams;  even 3 x 5 kolams are too complex to handle manually.   The 

classification of the 30 distinct 2 x 3 kolams into 6 classes based on the symmetry 

properties and the identification of a Group structure of the symmetry operators, 

may help in the classification of higher order kolams. Finally it is shown how the 

construction can be extrapolated from square to diamond shaped grids. 

There may be some interesting connections between kolams and knots.  

Knot theory is a flourishing branch of Algebraic topology with many applications 

in science and technology.  A knot is a tangled loop(s) of curve(s) in 3-

dimensional space and is characterised by n the number of crossings (over and 

under).  The simplest knot is the ‘unknot’ which is a single loop and many such 

loops will form a link.  The single-loop kolam is actually the trivial unknot and 

multiple loop kolam is equivalent to multiple unknots not linked with each other.  

The most important and unsolved problem in Knot theory is to find an algorithm 

to determine if two given knots of n crossings  are topologically equivalent or not.  

The corresponding problem in kolams is to decide if two given kolams of the same 

size have the same number of loops, which may be a trivial problem.  However, it 

is possible that Knot theory and Group theory, besides Graph Theory,  may be of  

help in classifying and enumerating kolams of various sizes.   
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Figure Captions. 

Figure 1.  Construction of a square Fibonacci kolam.  (Figure 2 of Part I). 

Figure 2.  Lucas kolams:  4
2
. 

Figure 3.  Lucas kolams:  7
2
 and 9

2
. 

Figure 4.  Generalized Fibonacci kolams (GFKs): (a), (b) 6
2
  (c), (d) 9

2
. 

Figure 5.  Generalized Fibonacci kolams: (a) 5
2
  (b) 6

2
. 

Figure 6.  Composition of GFK rectangles: (a) 12 x 19  (b) 7 x 18. 

Figure 7.  Fibonacci kolams:  2
2
 (single loop) 

Figure 8.  Fibonacci kolams:  2
2
 (multiple loop). 

Figure 9.  Fibonacci Rectangular kolams:  2 x 3 

Figure 10. Structure of Diamond Grid kolam  D(13). 
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Fig  6a. COMPOSITION  OF  12 X 19  RECTANGLE  

Fig  6b. COMPOSITION  OF  7 X 18  RECTANGLE  

FIGURE  6 
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FIGURE  7(a)

FIGURE  7(b)
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FIGURE  8(a)

FIGURE  8(b)
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FIGURE 10:  STRUCTURE OF THE DIAMOND GRID
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           Table 1:  Summary of Q = (a  b  c  d)  for

    Generalized Fibonacci Square Kolams of size n

n a b c d k

2m+1 1+2k m-k m+k+ 1 2m +1 0,1,2,3.

(m = 1,2..)

4t 2k 2t -k 2t +k 4t 1,3,5…

(t = 1,2…)

4t+2 2k 2t +1-k 2t+1+ k 4t +2 0,2,4,6..

(t = 1,2…)

                     Table 2:  Choices of Q = (a  b  c  d ) 

                               and  kopt  for some  n

n kopt a b c d = n

14 2 4 5 9 14

15 1 3 6 9 15

16 1 2 7 9 16

17 2 5 6 11 17

18 2 4 7 11 18

19 2 5 7 12 19

20 3 6 7 13 20

21 2 5 8 13 21

22 2 4 9 13 22

23 2 5 9 14 23

24 3 6 9 15 24
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                  TABLE 3.  SYMMETRY  PROPERTIES  OF

       2  X  3  RECTANGULAR  KOLAMS

KOLAM

K

SYMMETRY

OPERATION

I (X  Y)

R(90) (Y  -X)

R(180) (-X -Y)

=Mo

R(-90) (-Y  X)

Mx (X  -Y)

My (-X  Y)

M(45) (Y   X)

=MyR(90)

M(-45) (-Y -X)

=MxR(90)
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I R(90) R(180) R(-90) M(x) M(y) M(45) M(-45)

(X    Y) I I R(90) R(180) R(-90) M(x) M(y) M(45) M(-45)

(Y   -X) R(90) R(90) R(180) R(-90) I M(-45) M(45) M(y) M(x)

(-X   -Y) R(180) R(180) R(-90) I R(90) M(y) M(x) M(-45) M(45)

(-Y  -X) R(-90) R(-90) I R(90) R(180) M(45) M(-45) M(x) M(y)

(X   -Y) M(x) M(x) M(-45) M(y) M(45) I R(180) R(-90) R(90)

(-X   Y) M(y) M(y) M(45) M(x) M(-45) R(180) I R(90) R(-90)

(Y    X) M(45) M(45) M(y) M(-45) M(x) R(-90) R(90) I R(180)

(-Y  -X) M(-45) M(-45) M(x) M(45) M(y) R(90) R(-90) R(180) I

TABLE 4. GROUP  TABLE: 

SYMMETRY  OPERATORS  OF  RECTANGLES


