KOLAM DESIGNS BASED ON FIBONACCI NUMBERS
 Part II: Square and Rectangular designs of arbitrary size based on Generalized Fibonacci Numbers

S. Naranan

(20 A/3, Second Cross Street, Jayaramnagar
Thiruvanmiyur, Chennai 600-041)
e-mail: snaranan@vsnl.net
23 August 2007

KOLAM DESIGNS BASED ON
 FIBONACCI NUMBERS

 Part II: Square and Rectangular designs of arbitrary size based

 Part II: Square and Rectangular designs of arbitrary size based on Generalized Fibonacci Numbers

 on Generalized Fibonacci Numbers}

S. Naranan

In Part I of this article we presented a scheme for creating a class of kolams based on Fibonacci numbers. Several square and rectangular kolams were displayed. In this Part II, the scheme is generalized to arbitrary sizes using Generalized Fibonacci numbers. The problem of enumeration - the number of possible Fibonacci kolams of a given size - is discussed. For 2×3 kolams symmetry operators forming a group are used to classify them. Finally the scheme is further extended beyond square grids to cover diamond-shaped grids. Possible connections of kolams to Knot theory and Group theory are indicated.

1. Introduction.

Kolams are decorative patterns drawn as curved lines around dots in a rectangular grid. In Part I [1] we described a class of Kolam designs based on Fibonacci numbers $\left(F_{n}\right)$ in the Fibonacci series

$$
\begin{array}{lllllllllllll}
0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 \tag{*}
\end{array}
$$

They are generated by the simple recursive equation

$$
\begin{equation*}
F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2} \quad(n>1) \tag{1}
\end{equation*}
$$

We constructed Fibonacci Square (FS) kolams of size $F_{n}{ }^{2}$ and Fibonacci Rectangular (FR) kolams of sides equal to successive Fibonacci numbers F_{n-1} and F_{n-2}. We adopted a few ground rules: square lattices, symmetry (four-fold rotational), single (endless) loops and no unit cells without dots at the centre. These rules enhance the aesthetic value of the designs and help pose mathematical problems for exploration. We presented FS kolams of size $3^{2}, 5^{2}, 8^{2}, 13^{2}, 21^{2}$ and FR kolams of size $2 \times 3,3 \times 5,5 \times 8$ and 8×13 in [1].

The construction is modular: building bigger Fibonacci kolams (FKs) from smaller sub-units. The procedure exploits an important property of Fibonacci numbers. Let $\mathrm{Q}=\left(\begin{array}{llll}a & b & c & d\end{array}\right)$ be a quartet of consecutive Fibonacci numbers. Then

$$
\begin{array}{r}
b c=b^{2}+a b \\
d^{2}=a^{2}+4 b c \tag{2b}
\end{array}
$$

Both are easily proved using $d=c+b, c=b+a$. The geometrical versions of equations (2a) and (2b) are given in Figure 1, which bears duplication from Part I (Figure 2) since this is the basis for building FKs. For example for $\mathrm{Q}=\left(\begin{array}{lll}3 & 5 & 8\end{array} 13\right)$ an FS kolam $13^{2}\left(d^{2}\right)$ is made up of a smaller FS kolam $3^{2}\left(a^{2}\right)$ at the centre and four FR kolams of $5 \times 8(b x c)$ arranged cyclically around the square (Figure 7c in Part I). The merit of this construction lies in the fact that the cyclic arrangement automatically ensures four-fold rotational symmetry of the square kolam if the central square kolam is symmetric.

At the end of Part I, it was mentioned that equations (2a) and (2b) apply also for Generalized Fibonacci numbers defined by

$$
\begin{equation*}
G_{0}=\alpha, G_{1}=\beta, G_{n}=G_{n-1}+G_{n-2} \quad(n>1) \tag{3}
\end{equation*}
$$

The Fibonacci series $\left(^{*}\right)$ is a special case of equation (3) with $(\alpha, \beta)=(0,1)$. For example for $(\alpha, \beta)=(2,1)$, we have the Lucas series

$$
\begin{array}{llllllllll}
2 & 1 & 3 & 4 & 7 & 11 & 18 & 29 & 47 & 76
\end{array}
$$

\qquad
Any quartet $\mathrm{Q}=(a b c d)$ of Lucas numbers also satisfies equations (2a) and (2b).
First we will generate "Lucas Square Kolams" of size 4^{2} based on $Q=\left(\begin{array}{l}2 \\ 1\end{array}\right.$ $34)$. As a variant for 4^{2} we consider $\mathrm{Q}=\left(\begin{array}{llll}0 & 2 & 2 & 4\end{array}\right)$ corresponding to $(\alpha, \beta)=(0$, 2), and find new patterns (section 2). This is the first step towards producing GFKs of any arbitrary size d^{2} by suitably choosing the quartet Q . Thus the class of GFKs covers square kolams of all sizes (section 3).

So far we have confined to square cells in square and rectangular grids. Is it possible to extend GFKs to other grids, such as the diamond-shaped grids of the type in Figures 1(g), 1(h), 1(i) in Part I? It can be done and we will indicate how to transform a square grid FK to a diamond grid kolam.

We have a very broad canvas to create new kolam designs and to realise the full potential we need the aid of computer with suitable software of algorithms and graphic aids.

2. Lucas Kolam designs of $\mathbf{4}^{\mathbf{2}}$ and $\mathbf{7}^{\mathbf{2}}$.

The Lucas quartet $\mathrm{Q}=\left(\begin{array}{llll}2 & 1 & 3 & 4\end{array}\right): 4^{2}=2^{2}+4\left(\begin{array}{ll}1 \times 3\end{array}\right)$ is the basis for a 4^{2} square Lucas kolam. In Figures 2(a) and 2(b) there are four 1 x 3 'rectangles' cyclically placed around a square 2^{2} cloverleaf (Part I, Figure 5c). The splicing points between the 'rectangles' (actually linear strings) and the central square are shown as dark dots. The two figures have different splicing points. Note that the splices come in sets of four, for preserving symmetry (short for four-fold rotational symmetry). These two are the only possible single loop 4^{2} Lucas kolams. The other designs in Figure 2 are explained in section 3.

We can build a 7^{2} Lucas kolam from $\mathrm{Q}=\left(\begin{array}{llll}1 & 3 & 4 & 7\end{array}\right): 7^{2}=1^{2}+4\left(\begin{array}{ll}3 & \times 4\end{array}\right)$. The 3×4 rectangle can be composed from a 3^{2} square and a 1×3 linear string. (Figure 3a). Four such rectangles can be merged with the centre $\operatorname{dot}\left(1^{2}\right)$ in a fourway splice (Figure 3b). Note that there is a wide choice for the 3^{2} (section 5) since it need not be symmetric; but we have chosen the unique 3^{2} square.

3. Generalized Fibonacci Kolams: $\mathbf{4}^{\mathbf{2}}, \mathbf{6}^{\mathbf{2}}, \mathbf{9}^{\mathbf{2}}$ and $\mathbf{1 0}^{\mathbf{2}}$.

So far we have designed square kolams $n^{2}: n=2,3,5,8$ (Fibonacci) and n $=4,7$ (Lucas). To fill the gap, $n=6,9,10$ we need to consider Generalized Fibonacci numbers and we incidentally generate a GF kolam of size 4^{2} in addition. The quartets corresponding to the kolams are as follows:
$\left.\begin{array}{cccc}\text { Kolam } & \mathbf{Q}=\left(\begin{array}{llll}\boldsymbol{a} & \boldsymbol{b} & \boldsymbol{c} & \boldsymbol{d}\end{array}\right) & \text { Composition } & (\boldsymbol{\alpha}, \boldsymbol{\beta}) \\ 4^{2} & \left(\begin{array}{llll}0 & 2 & 2 & 4\end{array}\right) & 4^{2}=0^{2}+4(2 \times 2) & (0,2) \\ 6^{2} & \left(\begin{array}{l}0 \\ 0\end{array}\right. & 3 & 6\end{array}\right) \quad 6^{2}=0^{2}+4(3 \times 3) \quad(0,3)$
$4^{\mathbf{2}}$ kolam: The rectangles $(b x c c)$ degenerate into 2×2 squares. These squares need not be symmetric since the symmetry requirement is only for the big square (d^{2}). In Figure 2(c), (d), (e), (f) are shown the 2×2 modules and the kolams they generate. The squares are merged at the (imaginary) centre $\left(0^{2}!\right)$ in a four-way splice. Additional splices are shown as four dark dots. Note the 2×2 squares in Figure 2(c) and 2(f) are mirror images (reflected in a vertical axis), yet they yield very different patterns. Also Figures 2(d), 2(e) have as their generators 2×2 squares which are cyclic (one rotated 90°).

Figure 2(c) is a beautiful popular kolam known as Brahmamudi (Brahma's knot) and is used as a basic module to draw a large variety of designs in different grid shapes. Figure 2(d) is a variant of Brahmamudi with skewed circular loops touching at the centre - an interesting twist inspired by the modular approach.
$\mathbf{6}^{\mathbf{2}}$ Kolam: The degenerate 'rectangles' or asymmetric squares 3×3 have great variety (section 5) and we have chosen just two as generators for the 6^{2} kolams in Figures 4(a), 4(b). As in the case of 4^{2} kolams, here too there is a fourway splice at the centre and an additional set of four splices marked by dark dots.
$\mathbf{9}^{\mathbf{2}}$ Kolam: This is made up of four 4×5 rectangles around a dot $\left(1^{2}\right)$. The rectangle is composed of a 4^{2} Brahmamudi and linear string of length 4 (1×4) spliced to it on the right at two points (Figure 3c). Four such rectangles are merged with the central dot in a four-way splice and there are in addition two sets of splices (Figure 3d). The result is an intricate complex pattern based on the Brahmamudi.
$\mathbf{1 0}^{\mathbf{2}}$ Kolam: Here again the generators are squares as in 4^{2} and 6^{2} kolams. We will choose a 5×5 asymmetric kolam as the generator. First we describe a general procedure for producing asymmetric square GFK. (The symmetric versions are created as in Figure 1b). In the quartet $\mathbf{Q}=\left(\begin{array}{llll}a & b & c & d\end{array}\right)$

$$
d^{2}=d(b+c)=d c+d b=d c+(c+b) b=d c+c b+b^{2}
$$

d^{2} is composed of rectangles $d x c, c x b$ and a square b^{2} (Figure 4 c). The three modules can be suitably joined together to yield a d^{2} asymmetric kolam. Note that the square kolam need not be single-loop, as the requirement of single loop is
only for the larger 10^{2} kolam. To emphasize this point, we have chosen an asymmetric 5^{2} with three splices and two loops (Figure 4d). Four such squares are joined at the centre in a four-way splice (as in 4^{2} and 6^{2} kolams) with two added sets of splices (8 in all). The result is a single loop 10^{2} kolam (Figure 4e).

4. Generalized Fibonacci Kolams of Arbitrary Sizes.

After dealing with particular cases of FS kolams of size $n^{2}(n \leq 10)$, we now generalize to arbitrary n. In the GF quartet $\mathrm{Q}=(a b c d)$, we set $d=n$ and find suitable values for c; then b and a are automatically determined as $b=d-c$ and $a=c-b$. A Generalized Fibonacci series $\left\{G_{n}\right\}$ is completely determined by the two starting numbers $\left(G_{0}, G_{l}\right)=(\alpha, \beta)$. The ratio of consecutive GF numbers attains a limiting value $\varphi=1.618034$...the Golden ratio which is independent of α and $\beta . \alpha, \beta$ are usually chosen as co-prime $[\operatorname{gcd}(\alpha, \beta)=1]$. If α, β are not co-prime with gcd (greatest common divisor) $g(\neq 1)$, then every G_{n} is a multiple of g (equation 3). It can be shown that if g is the gcd of any two adjacent numbers in the series, then g divides a. The proof is as follows: If g is the gcd of any pair m, n then g divides $m-n$. Here $g=g(n, c)$ divides $n-c=b$. Since g divides both c and b, g divides $c-b=a$, the smallest number in Q . However, we can cascade down the series to terms $<a$ and finally conclude that g divides β and α. If α or β happens to be 1 , then $g=1$. For Fibonacci and Lucas numbers $\beta=1$, so $g=1$.

We have to consider two cases: n odd or n even.
Case I. $n=2 m+1(=d)$.
We choose the quartet $\mathrm{Q}=\left(\begin{array}{llll}a & b & c & d\end{array}\right)$

$$
\mathrm{Q}=(1+2 k, \quad m-k, \quad m+k+1, \quad 2 m+1) \quad k=0,1,2,3 \ldots \ldots
$$

For instance, for $n=11, k$ determines the quartets

$$
\begin{array}{ll}
k=0 & \mathrm{Q}=\left(\begin{array}{llll}
1 & 5 & 6 & 11
\end{array}\right) \\
k=1 & \mathrm{Q}=\left(\begin{array}{llll}
3 & 4 & 7 & 11
\end{array}\right) \\
k=2 & \mathrm{Q}=\left(\begin{array}{llll}
5 & 3 & 8 & 11
\end{array}\right)
\end{array}
$$

as three possible choices. In all of them adjacent numbers are co-prime. But this may not be always true. For $n=15$

$$
\begin{array}{ll}
k=0 & \mathrm{Q}=\left(\begin{array}{llll}
1 & 7 & 8 & 15
\end{array}\right) \\
k=1 & \mathrm{Q}=\left(\begin{array}{llll}
3 & 6 & 9 & 15
\end{array}\right) \\
k=2 & \mathrm{Q}=\left(\begin{array}{llll}
5 & 5 & 10 & 15
\end{array}\right) \\
k=3 & \mathrm{Q}=\left(\begin{array}{llll}
7 & 4 & 11 & 15
\end{array}\right)
\end{array}
$$

For $k=1$, all numbers in the quartet are divisible by 3 and for $k=2$ all are divisible by 5. These quartets, however, can also be used for building kolams n^{2}.

Case II: $n=2 m(=d)$
We choose $\mathrm{Q}=\left(\begin{array}{llll}a & b & c & d\end{array}\right)$ as

$$
\mathrm{Q}=(2 k, \quad m-k, \quad m+k, \quad 2 m) \quad k=0,1,2,3 \ldots .
$$

Here a and d are even. But $m+k$ and $m-k$ are either both odd or both even, because their difference is $2 k$ an even number. There are two sub-cases to consider: (a) m is even $(=2 t)$ (b) m is odd $(=2 t+1)$.

Case IIa: $n=2 m=4 t(=d)$
We choose

$$
\mathrm{Q}=(2 k, \quad 2 t-k, \quad 2 t+k, \quad 4 t) \quad k=1,3,5 \ldots .
$$

Restricting k to odd values ($1,3,5, \ldots$) ensures that the middle two are odd (unlike a and d). e.g. for $n=12$

$$
\begin{array}{ll}
k=1 & \mathrm{Q}=\left(\begin{array}{llll}
2 & 5 & 7 & 12
\end{array}\right) \\
k=3 & \mathrm{Q}=\left(\begin{array}{llll}
6 & 3 & 9 & 12
\end{array}\right)
\end{array}
$$

For $k=3$ all numbers in Q are multiples of 3 .
Case IIb: $n=2 m=4 t+2(=d)$

$$
\mathrm{Q}=(2 k, \quad 2 t+1-k, \quad 2 t+1+k, \quad 4 t+2) \quad k=0,2,4 \ldots . .
$$

Restricting k to even numbers and 0 yields odd numbers for the middle two. e.g. for $n=10$

$$
\begin{array}{ll}
k=0 & \mathrm{Q}=\left(\begin{array}{llll}
0 & 5 & 5 & 10
\end{array}\right) \\
k=2 & \mathrm{Q}=\left(\begin{array}{llll}
4 & 3 & 7 & 10
\end{array}\right) \\
k=4 & \mathrm{Q}=\left(\begin{array}{llll}
8 & 1 & 9 & 10
\end{array}\right)
\end{array}
$$

In Figure $4(\mathrm{e})(n=10)$, the value of k is 0 . Other possible choices are $k=2,4$. All the three cases are summarized in Table 1. Note that the gcd of the middle pair of numbers (sides of rectangle) is always a factor of a including 1 .

In any GF series with starters (α, β) the ratio of adjacent numbers approaches the Golden ratio $\varphi=1.618034 \ldots$ for large n. However, for a given $\mathrm{Q}=$ $\left(\begin{array}{llll}a & b & c & d\end{array}\right)$, we can achieve a ratio c / b as close to φ as possible by choosing an optimum value for k. This optimum value $k_{\text {opt }}$ is given by

$$
\begin{array}{ll}
k_{\text {opt }}=0.118 n-0.5 & \\
\left.k_{\text {opt }}=0.118 n \text { odd }\right) \\
n & \\
(n \text { even })
\end{array}
$$

The round off for $k_{\text {opt }}$ is as follows. For n odd, it is rounded off to the nearest integer. For $n=4 t$ (a multiple of 4), the round off is to the nearest odd integer; for $n=4 t+2$ the round off is to the nearest even integer. Table 2 gives the optimum quartet $\mathrm{Q}\left(\begin{array}{lll}a & b & c\end{array} d\right)$ and the corresponding $k_{\text {opt }}$ for $n=14$ to 24 .

Before concluding this section, we mention a simple scheme to generate symmetric square kolams n^{2}. It is based on the identity

$$
n^{2}=(n-2)^{2}+4(n-1)
$$

Geometrically: square kolam n^{2} has a central smaller square kolam $(n-2)^{2}$ surrounded on four sides by linear strings of size $(n-1)$ in a cyclic order. Repeating the process, e.g.

$$
(n-2)^{2}=(n-4)^{2}+4(n-3)
$$

etc. one ends up with a 1^{2} or 2^{2} at the centre. This works for all n, odd or even. Although this appears unrelated to GF numbers, it actually corresponds to

$$
\mathrm{Q}=\left(n-2, \quad 1, \quad n-1, \quad n^{2}\right)
$$

in which b is set equal to 1 , to make the rectangle $b x c$ a linear string of length c. For $n=4$, the Lucas quartet $\mathrm{Q}\left(\begin{array}{llll}2 & 1 & 3 & 4\end{array}\right)$ of Figures $2 \mathrm{a}, 2 \mathrm{~b}$ is an example. Square kolams of 5^{2} and 6^{2} based on this are given in Figures 5a, 5b.

4.1 Generalized Fibonacci Rectangular Kolams of Arbitrary Size

Our emphasis has been mostly on GF square kolams. We now turn to GF rectangular kolams of arbitrary size $m \times n$. Any given rectangle can be broken up into a set of squares and a linear string. This is illustrated by a few examples.

$$
\begin{aligned}
& \left.\mathbf{7} \times \mathbf{1 8}=7(7+7+4)=7^{2}+7^{2}+4(4+3)=7^{2}+7^{2}+4^{2}+3(3+1)=\mathbf{7}^{2}+7^{2}+4^{2}+\mathbf{3}^{2}+\mathbf{1 . 3}\right) \\
& \mathbf{1 2} \times \mathbf{1 9}=12(12+7)=12^{2}+7(7+5)=12^{2}+7^{2}+5(5+2)=12^{2}+7^{2}+5^{2}+2(2+2+1)
\end{aligned}
$$

$$
=12^{2}+7^{2}+5^{2}+2^{2}+2^{2}+(1.2)
$$

$$
\begin{aligned}
& \mathbf{9} \times \mathbf{1 3}=9(9+4)=9^{2}+4(4+4+1)=\mathbf{9}^{2}+\mathbf{4}^{2}+\mathbf{4}^{\mathbf{2}}+\mathbf{(1 . 4)} \\
& \left.\mathbf{5} \times \mathbf{8}=5(5+3)=5^{2}+3(3+2)=5^{2}+3^{2}+2(2+1)=\mathbf{5}^{2}+\mathbf{3}^{2}+\mathbf{2}^{2}+\mathbf{(1 . 2}\right)
\end{aligned}
$$

The constituent squares and the linear string have to be positioned in a cyclic pattern as illustrated for 12×19 and 7×18 in Figure 6. The square kolams are constructed as described in the previous sections.

5. Enumeration of Kolams.

How many distinct kolams exist of a given size? This is a problem in combinatorics since the kolams are built from smaller sub-units. We start with the smallest square 2^{2} single-loop kolams. The only symmetric version is the 'cloverleaf' pattern (Figure 7a); this is used in building FKs with $a=2$ in Q ($a b$ $c \quad d)$. The asymmetric versions are useful in building 2×3 rectangles (as $2^{2}+1.2$). Four of them are shown in Figure 7(b); they are arranged in cyclic order (clockwise rotation by 90° in succession). Since these are to be used in 2×3 rectangles we have to consider all the four as different.

We now proceed to enumerate the different types of 2×3 kolams. Each $2 \times$ 3 is made up of a 2^{2} and a linear string 1×2. The constituents need not be singleloop since the single-loop requirement is only for the whole 2×3 kolam. So, we have more choices for 2^{2} as in Figure 8(b); the first two of the trio have two loops and the last one has three loops. In addition there are cyclic rotations of the above three as in Figure 7(b). For 1×2 we have two choices (Figure 8a) with one loop and two 'loops' and their cyclic rotations. The 2×3 kolam pattern will depend not only on the constituents (Figures 7,8) but also on the choice of the splicing points to join the 2^{2} and 1×2 string. Enumeration of all these possibilities can be handled manually. It turns out that there are 30 different 2×3 FR kolams. They can be classified into six different basic patterns shown in Figure 9. Others can be obtained as rotations and reflections of the basic types about suitably chosen axes. The six basic patterns are labeled ER G H U S ; the alphabet patterns reflect the shapes of the kolams and have the same symmetry properties as the kolams. These
'ERGHUS' kolams correspond to the SaRiGaMaPaDa kolams [2, 3] discussed in Part I [1].

5.1 Symmetry Properties of Fibonacci Rectangular Kolams 2×3.

A fundamental concept in science is 'symmetry' which is the subject of Group Theory with far-reaching and wide-ranging applications in all branches of science and technology. Here the operations on the basic pattern (or symmetry operators) are rotations about z-axis (perpendicular to the (X Y) plane of the paper) and reflections (mirror images) in the (X Y) plane. Rotations are labeled $\mathrm{R}\left(0^{\circ}\right), \mathrm{R}\left(90^{\circ}\right), \mathrm{R}\left(180^{\circ}\right), \mathrm{R}\left(270^{\circ}\right)$ - i.e. rotations of $0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}$. They are equivalent to $\mathrm{I}, \mathrm{R}\left(90^{\circ}\right), \mathrm{R}\left(180^{\circ}\right), \mathrm{R}\left(-90^{\circ}\right)$. I is the 'Identity' operator which leaves the pattern unchanged. Reflection operators are $\mathrm{M}(\mathrm{X}), \mathrm{M}(\mathrm{Y}), \mathrm{M}\left(45^{\circ}\right), \mathrm{M}\left(-45^{\circ}\right)-$ i.e. reflections about X -axis, Y -axis, diagonal $\mathrm{Y}=\mathrm{X}$ and diagonal $\mathrm{Y}=-\mathrm{X}$ respectively. These 8 operators

$$
\text { I } \mathrm{R}\left(90^{\circ}\right) \quad \mathrm{R}\left(180^{\circ}\right) \quad \mathrm{R}\left(-90^{\circ}\right) \quad \mathrm{M}(\mathrm{X}) \quad \mathrm{M}(\mathrm{Y}) \quad \mathrm{M}\left(45^{\circ}\right) \quad \mathrm{M}\left(-45^{\circ}\right)
$$

form a 'group' as defined in Group Theory (see Box).
How do these operators alter the shapes of the ERGHUS kolams? Table 3 summarises the results. The basic kolam shapes (K) are in the top box. Successive rows show the effect of different operators on K. Instead of the kolams of Figure 9, we adopt the alphabets which have the same symmetry properties. Some interesting features are as follows;
(a) Of the total $48(6 \times 8)$ patterns, only 30 are distinct; the remaining 18 are repetitions, shown as dotted patterns.
(b) Only for ' R ' and ' G ' all the 8 operators yield distinct patterns (columns 2,3). For ' E ' ' U ' ' S ' only four are distinct. For ' H ' only two give distinct patterns [I and $\mathrm{R}\left(90^{\circ}\right)$]. These account for $2 \times 8+3 \times 4+1 \times 2=30$ distinct patterns.
(c) From the Group Table (Box), two operators A, B acting in succession on the kolam patterns (K) is equivalent to a single operation. e.g. $\mathrm{R}\left(90^{\circ}\right) \mathrm{R}\left(90^{\circ}\right)=$ $\mathrm{R}\left(180^{\circ}\right), \mathrm{M}(\mathrm{Y}) \mathrm{R}\left(90^{\circ}\right)=\mathrm{M}\left(45^{\circ}\right)$.

The Group theoretic approach could possibly facilitate classification of
kolams of higher order. This is a topic worthy of further exploration. Another approach to enumeration is Graph Theory. Gift and Rani Siromoney first applied Graph Theory to kolams [4]. In the graph, every dot represents a node and a pair of dots linked in the kolam is an edge. Using combinatorial techniques the number of possible graphs with a given number of nodes can be counted [5].

5.2 Fibonacci Kolams of size $\mathbf{5}^{\mathbf{2}}$.

In Part I [1] we built 5^{2} FS kolams using $\mathrm{Q}=\left(\begin{array}{llll}1 & 2 & 3 & 5\end{array}\right)$; figures 3(b), 3(d) are examples using ' E ' as the basic pattern for 2×3 rectangles. In Figure 3(b) the merging of the four rectangles with the central square $\left(1^{2}\right)$ was by a four-way splice, yielding a single-loop 5^{2} FS kolam. In Figure 3(d), further splices were added at two sets of points (8 in all) to obtain a more complex pattern. Adopting the same strategy for the 30 distinct ERGHUS kolams we find the following.
(a) The four-way splice at the centre gives a desired single-loop FS kolam for all the 30 patterns.
(b) Additional splices, besides the four-way splice, always yield multiple loops except for pattern 'E'. So, Figure 3(d) is unique.

Thus we have $31(30+1)$ different FS kolams 5^{2} based on $\mathrm{Q}\left(\begin{array}{llll}1 & 2 & 3 & 5\end{array}\right)$. Using the Generalized Fibonacci quartet Q ($\left.\begin{array}{llll}3 & 1 & 4 & 5\end{array}\right)$, a GFS kolam 5^{2} was made by splicing four linear strings 1×3 to a central symmetric 3^{2} (Figure 5a). This Figure is for a particular choice of splicing point; it is clear there are two other choices. Thus we have 3 GF 5^{2} kolams. For both the quartets put together we have a total of 34 different square kolams of size 5^{2}.

5.3. Fibonacci Square and Rectangular Kolams of Higher Order.

The number of possible FKs of size $3 \times 5,8^{2}$ etc rises very rapidly and their enumeration by brute force methods is impractical. We illustrate the complexity of counting for 3×5 rectangles. Note that the enumeration problem considered here is restricted to the composition $3 \times 5=3^{2}+(2 \times 3)$. To simplify our attempts

B O X

Basics of Group Theory and Application to Kolam Designs.

A Group G is a set of distinct elements $\left.G=E_{1} \quad E_{2} \quad E_{3} \quad E_{4} \ldots.\right)$ with a 'binary' operation (or 'product') which obeys four rules:
(1) Product of any two elements is also an element of the Group.

If $\mathrm{AB}=\mathrm{C}$. then C also belongs to G .
$A A=A^{2}$ also belongs to G. This is the 'closure' property.
(2) I, the identity element is a member of G such that

$$
\mathrm{IA}=\mathrm{AI}=\mathrm{I}
$$

(3) Associative Law: $\mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}$
(4) Every element A has an inverse element X in G such that

$$
\mathrm{AX}=\mathrm{I} \text { or } \mathrm{X}=\mathrm{A}^{-1}
$$

G is an Abelian Group if operators commute: $A B=B A$.
In the context of symmetry properties of Rectangular Kolams we define the Group G of order 8 (8 elements)

$$
\mathrm{G}=\left\{\begin{array}{lllllll}
\mathrm{I} & \mathrm{R}\left(90^{\circ}\right) & \mathrm{R}\left(180^{\circ}\right) & \mathrm{R}\left(-90^{\circ}\right) & \mathrm{M}(\mathrm{X}) & \mathrm{M}(\mathrm{Y}) & \mathrm{M}\left(45^{\circ}\right)
\end{array} \mathrm{M}\left(-45^{\circ}\right)\right\}
$$

They are the rotation and reflection operators (section 5). The Group Table represents, as an 8×8 matrix, all possible products AB where A and B are any two elements of G (Table 4). Here the 'product' AB has to be interpreted as 'first B, then A' operating on the object. All the four group properties are easily verified in the Table. G is an Abelian Group since $A B=B A$ and the Table is symmetric about the main diagonal. Every column or row is a different permutation of the 8 elements of the Group (closure). For every element A there exists another X such that $\mathrm{AX}=\mathrm{I}$ and no two elements have the same inverse. Since the order of operations is immaterial the Associative Law is satisfied. Further note the subset of the first four elements of G

$$
\mathrm{G}_{\mathrm{R}}=\left\{\mathrm{I} \quad \mathrm{R}\left(90^{\circ}\right) \quad \mathrm{R}\left(180^{\circ}\right) \quad \mathrm{R}\left(-90^{\circ}\right)\right\}
$$

also forms a Group obeying all the four properties.
first we consider only single-loop 3^{2} and 2×3 constituents. For the 2×3 rectangles we have 30 choices (single-loop). For 3^{2} we consider asymmetric single-loop kolams also. These have to be in turn obtained by regarding 3^{2} as 2 x 3 $+1 \times 3$.

In [2] 63 kolams of 3^{2} are displayed. Of these one is a repetition (\# 35 and \#39 are the same) and 25 have empty unit cells rejected in our analysis. Of the remaining 37, only one is a symmetric single-loop kolam (Figure 5d, Part I). The remaining 36 asymmetric kolams have either one loop (28), two loops (7) or three loops (1). This list may not cover all the possibilities.

In enumerating 3×5 rectangles, we have to consider the number of choices for (a) 2×3 rectangles (b) 3^{2} and (c) splicing points. For (a) we have 30 choices; for (b) up to 28×8 (counting reflections and rotations) +1 (symmetric case), i.e. up to 225 choices. For (c) there are up to 3 choices. Over all there can be up to $30 \times 225 \times 3=20,250$ patterns. This is perhaps a gross over-estimate since they include patterns with repetitions, multiple loops and/or empty unit cells. The number is also an under-estimate since only single-loop constituents are considered; multiple loop constituents will yield more possibilities. Finally all this is based only on the composition $3 \times 5=3^{2}+2 \times 3$.

Clearly, the enumeration becomes even harder as we go to higher orders. For example to enumerate the number of 8^{2} we need to know the number of possible 3×5 rectangles which is still uncertain.

6. Fibonacci Kolams on Diamond Grids.

Till now we have adopted a square lattice or grid of dots for Kolam designs. In the folk art of Kolam, diamond-shaped grids are very popular. So we would like to consider extending the Fibonacci Kolams to diamond grids.

A diamond grid $\mathrm{D}(\mathrm{w})$ is specified by its diameter or width with w dots. For odd w, the numbers of dots in successive rows from top are $1,3,5,7 \ldots \ldots . w-2, w$, $w-2 \ldots \ldots \ldots .7,5,3,1$. In Figure 10 a diamond grid is shown for $w=13$, i.e. $\mathrm{D}(13)$. If w is even, the pattern of dots in successive rows is $2,4,6 \ldots \ldots . w-2, w, w, w-2$
$\ldots . .6,4,2$. For convenience we consider only odd $w . \mathrm{D}(w)$ has a central square grid of size $(w+1) / 2$ surrounded by four identical right-angled triangles on the four sides as shown in Figure 10. We set $(w+1) / 2=d$. Each triangle has a base (the hypotenuse) of ($d-2$) dots and a height of $(d-1) / 2$ dots. We label this triangle as 'Fibonacci Triangle' FT(d). So far we have dealt with Fibonacci Squares FS(d), Fibonacci Rectangles $\mathrm{FR}(b, c)$ related to the quartet $\mathrm{Q}\left(\begin{array}{llll}a & b & c & d\end{array}\right)$; now we have added a Fibonacci Triangle FT(d) with base ($d-2$) and height $(d-1) / 2$.

Whatever be the symmetry property of $\mathrm{FT}(d)$ the overall symmetry of $\mathrm{D}(w)$ is preserved because identical FTs are appended on all the sides. It turns out that $\mathrm{FT}(d)$ can be broken up into four parts: (a) a smaller $\mathrm{FT}(a)$, (b) an $\operatorname{FR}(a, b)$ and (c) two isosceles right triangles $\mathrm{RT}(b)$ of height ($b-1$). By iterating the procedure one can build $\mathrm{FT}(d)$ from smaller constituents. Each of them can be individually spliced to the central square grid of side d^{2}. The same splicing is repeated for all the four FTs, resulting in a single-loop symmetric diamond grid $\mathrm{D}(w)$. This scheme is easily adapted for even w too; in this case the FT has two dots in the top row (a trapezium). Further, the procedure works for any w since it is based on Generalized Fibonacci Numbers.

7. Discussion and Summary.

We have presented in this article a general procedure to create square and rectangular kolam designs of arbitrary size based on the Generalized Fibonacci numbers. The key feature is the Fibonacci recursion relation (equation 3) that allows building a square $\left(d^{2}\right)$ with sub-units of a smaller square $\left(a^{2}\right)$ and four cyclically placed rectangles $\left(\begin{array}{lll}b & x & c\end{array}\right)$. The construction has built-in four-fold rotational symmetry mandated by our ground rules. Merging the sub-units by splicing requires a judicious choice of splicing points to avoid multiple loops and empty unit cells. First we constructed Fibonacci squares $2^{2}, 3^{2}, 5^{2}, 8^{2}, 13^{2}, 21^{2}$ and Fibonacci rectangles $2 \times 3,3 \times 5,5 \times 8$ and 8×13 in Part I[1] and then extended the list to $4^{2}, 6^{2}, 7^{2}, 9^{2}$ and 10^{2} to cover all $m^{2}(m \leq 10)$. To extend construction to any arbitrary size square, a suitable choice of the quartet of
consecutive Fibonacci numbers $\mathrm{Q}\left(\begin{array}{llll}a & b & c & d\end{array}\right)$ has to be made. The problem of enumeration of the number of distinct Fibonacci kolams is tractable only for 2×3, 3^{2} and 5^{2} kolams; even 3×5 kolams are too complex to handle manually. The classification of the 30 distinct 2×3 kolams into 6 classes based on the symmetry properties and the identification of a Group structure of the symmetry operators, may help in the classification of higher order kolams. Finally it is shown how the construction can be extrapolated from square to diamond shaped grids.

There may be some interesting connections between kolams and knots. Knot theory is a flourishing branch of Algebraic topology with many applications in science and technology. A knot is a tangled loop(s) of curve(s) in 3dimensional space and is characterised by n the number of crossings (over and under). The simplest knot is the 'unknot' which is a single loop and many such loops will form a link. The single-loop kolam is actually the trivial unknot and multiple loop kolam is equivalent to multiple unknots not linked with each other. The most important and unsolved problem in Knot theory is to find an algorithm to determine if two given knots of n crossings are topologically equivalent or not. The corresponding problem in kolams is to decide if two given kolams of the same size have the same number of loops, which may be a trivial problem. However, it is possible that Knot theory and Group theory, besides Graph Theory, may be of help in classifying and enumerating kolams of various sizes.

Acknowledgments

I am grateful to T.V. Suresh for invaluable help with computer graphics software for drawing some of the kolams. The two supplements to Tamil magazines $[2,3]$ were the starting points and inspiration for this work. On a personal note: my daily morning walks in the by-lanes of South Chennai made me aware of the beauty, artistry and ingenuity in the kolams drawn in front of the house-holds and every day brings surprises. As a lad of 8 years, I was taught to draw kolams by my mother and I can still recall the thrill of learning to draw Brahmamudi. This article is dedicated to her memory.

Suggested Reading:

[1] S. Naranan. Kolam designs based on Fibonacci numbers. Part I: Square and Rectangular Designs. Resonance (2007)
[2] Salem Meera. Supplement to Tamil magazine 'Kumudam Snehidi', December 2005.
[3] Sumati Bharati. Sarigamapadani Kolangal Supplement to Tamil magazine 'Snehidi', February 2007.
[4] Gift Siromoney and Rani Siromoney. Mathematics for the Social Sciences.
Chapter 6. National Book Trust of India (New Delhi), Reprint (1979).
[5] R.Kit. Kittappa (private communication).

Figure Captions.

Figure 1. Construction of a square Fibonacci kolam. (Figure 2 of Part I).
Figure 2. Lucas kolams: 4^{2}.
Figure 3. Lucas kolams: 7^{2} and 9^{2}.
Figure 4. Generalized Fibonacci kolams (GFKs): (a), (b) 6^{2} (c), (d) 9^{2}.
Figure 5. Generalized Fibonacci kolams: (a) 5^{2} (b) 6^{2}.
Figure 6. Composition of GFK rectangles: (a) 12×19 (b) 7×18.
Figure 7. Fibonacci kolams: 2^{2} (single loop)
Figure 8. Fibonacci kolams: 2^{2} (multiple loop).
Figure 9. Fibonacci Rectangular kolams: 2×3
Figure 10. Structure of Diamond Grid kolam D(13).
S. Naranan retired as a Senior Professor of Physics at the Tata Institute of Fundamental Research, Mumbai after a research career in Cosmic-ray Physics and X-ray Astronomy, spanning 42 years. His research interests, outside his professional ones, include mathematics, statistics; in particular recreational mathematics, Number theory, Cryptograhy, Bibliometrics, Statistical Linguistics and Complexity theory. He lives in Chennai.

FIGURE 1

Figure 2.

Figure 3

Figure 4

Figure 5

Fig 6a. COMPOSITION OF 12×19 RECTANGLE

Fig 6b. COMPOSITION OF 7×18 RECTANGLE

FIGURE 6

FIGURE 7(a)

FIGURE 7(b)

FIGURE 8(a)

FIGURE 8(b)

Figure 9

Table 1: Summary of $Q=(a b c d)$ for Generalized Fibonacci Square Kolams of size n

\mathbf{n}	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{k}
$\mathbf{2 m + 1}$ $(\mathbf{m}=\mathbf{1 , 2} .)$. $\mathbf{4} \boldsymbol{t}$ $(\mathbf{t}=\mathbf{1 , 2} . .)$. $\mathbf{4 t + 2}$ $(\mathbf{t}=1,2 \ldots)$	$1+2 k$	$m-k$	$m+k+1$	$2 m+1$	$0,1,2,3$.

Table 2: Choices of $Q=(a b c c d)$ and kopt for some n

\mathbf{n}	kopt	\mathbf{a}	\mathbf{b}	\mathbf{c}	$\mathbf{d}=\mathbf{n}$
14	2	4	5	9	14
15	1	3	6	9	15
16	1	2	7	9	16
17	2	5	6	11	17
18	2	4	7	11	18
19	2	5	7	12	19
20	3	6	7	13	20
21	2	5	8	13	21
22	2	4	9	13	22
23	2	5	9	14	23
24	3	6	9	15	24

TABLE 3. SYMMETRY PROPERTIES OF 2 X 3 RECTANGULAR KOLAMS

TABLE 4. GROUP TABLE: SYMMETRY OPERATORS OF RECTANGLES

		I	R(90)	R(180)	$\mathrm{R}(-90)$	M(x)	M (y)	M(45)	M(-45)
$\left(\begin{array}{ll}\mathrm{X} & \mathrm{Y}\end{array}\right.$	I	I	$\mathrm{R}(90)$	$R(180)$	$R(-90)$	$\mathrm{M}(\mathrm{x})$	M(y)	$\mathrm{M}(45)$	$M(-45)$
($\mathrm{Y} \quad-\mathrm{X}$)	R(90)	R(90)	$R(180)$	$R(-90)$	I	M(-45)	$\mathrm{M}(45)$	$\mathrm{M}(\mathrm{y})$	$\mathrm{M}(\mathrm{x})$
(-X -Y)	$R(180)$	$R(180)$	$R(-90)$	1	$\mathrm{R}(90)$	$\mathrm{M}(\mathrm{y})$	M (x)	M(-45)	$\mathrm{M}(45)$
(-Y -X)	$R(-90)$	$\mathrm{R}(-90)$	1	$R(90)$	$R(180)$	$\mathrm{M}(45)$	$M(-45)$	$\mathrm{M}(\mathrm{x})$	M(y)
($\mathrm{X}-\mathrm{Y}$)	M(x)	$\mathrm{M}(\mathrm{x})$	$\mathrm{M}(-45)$	$\mathrm{M}(\mathrm{y})$	M(45)	I	R(180)	$\mathrm{R}(-90)$	$R(90)$
(-X Y)	M(y)	$\mathrm{M}(\mathrm{y})$	$\mathrm{M}(45)$	M (x)	M(-45)	$R(180)$	I	$\mathrm{R}(90)$	$R(-90)$
(Y X)	M(45)	$\mathrm{M}(45)$	$\mathrm{M}(\mathrm{y})$	M(-45)	M(x)	$\mathrm{R}(-90)$	$R(90)$	1	R(180)
(-Y -X)	M(-45)	M(-45)	$\mathrm{M}(\mathrm{x})$	$\mathrm{M}(45)$	$\mathrm{M}(\mathrm{y})$	R(90)	$R(-90)$	$R(180)$	1

